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Chapter 0

Guide to the text

Maths prerequisites

• Working familiarity with algebra, its operations, and their properties,
including square roots; knowledge of exponentials and logarithms is
useful.

• Working familiarity with solving equations and inequalities, linear
and non-linear.

• Working familiarity with the study of functions of one real variable.

• Working familiarity with derivatives.

• Understanding of what an integral is, even if you won’t be required
to solve integrals.

• Working familiarity with vector calculus.

• Some familiarity with functions of many variables.

• Understanding of what partial derivatives are.

Physics prerequisites

Just some vague reminiscences of secondary/high-school physics should
be enough.

It can be beneficial if you are familiar with basic physics notions like
velocity, mass, force, and similar ones; and if you vaguely remember about
Newton’s laws.
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0. Guide to the text

Structure of this text

0.0.1 ¬ Graphical devices

The text includes the following graphical devices:

• Important notions and definitions are also given in boldface.

• The side margins often report clickable references to previous topics, ¾ § 0.0.1 page 7
emphasized in blue.

• Important-notion boxes:

] Some important notion or definition

This is a definition or explanation of Something.

• Warnings and important points that require careful thinking:

- Careful!

Something you must be careful about.

• Exercises:

« Exercise 0.1

This isn’t really an exercise

• Discussions and connections with more advanced physics:

£ How things really are in quantum physics

Just for your curiosity. You don’t need to remember any of this.

0.0.2 ¬ Side pictures and quotes

This is an image of Saitama,
which actually has nothing to
do with the text on the left.

Pictures, graphs, or quotes related to the material are displayed on the
right.

0.0.3 ¬ Hyperlinks and bibliography

Some words are hyperlinks, like this one about One Punch Man1; you
also recognize them because they have a little footnote number. The links’

7
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0. Guide to the text

URLs are listed at the end of each chapter, just in case you’re reading a
printed copy and wonder what the link was.

The text gives bibliographic references, like “Einstein 1905a”, to sci-
entific literature. The references are listed in the final Bibliography on
page 234.

These references are not part of the course and don’t need to be
“studied”. They are given for two reasons:

• For your own curiosity.
“Believe nothing, O monks,
merely because you have been
told it, or because it is
traditional, or because you
yourselves have imagined it. Do
not believe what your teacher
tells you merely out of respect
for the teacher.”
(attributed to Gautama
Buddha)

• To back up what’s written in the text. In science you should not believe
something just because you’ve read it somewhere. You should, as
much as possible, go and check for yourself how the logic behind the
statement is proved and what is the experimental evidence behind the
statement.

0.0.4 ¬ Notation and terminology

Mathematical notation, as well as notation for physical dimensions, strictly
follows the standards given by the International System of Units (SI)2,
listed for example in iso 2009 and iso 2019.

8
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0. Guide to the text

URLs for chapter 0

1. https://onepunchman.fandom.com
2. https://www.nist.gov/pml/special-publication-811
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Chapter 1

Physics?

Philosophy is written in this grand book, the universe,
which stands continually open to our gaze. But the book
cannot be understood unless one first learns to
comprehend the language and read the letters in which it
is composed. It is written in the language of mathematics,
and its characters are triangles, circles, and other
geometric figures without which it is humanly impossible
to understand a single word of it.

G. Galilei 1623

If you think about it, many things we ordinarily do every day are some
sort of magic. Think of how you can instantaneously see and speak with a
person living on another continent, in real time, using just a small widget
in the palm of your hand. Think of how you can instantaneously see where
you are on the Earth, using the same widget. Think of how fast you can go
to another country, by flying in a huge metal thing. Think of how you can
command and interact with a purely fictitious animated world when you
play on your computer. The list can go on forever. Other things are luckily
less ordinary, but still inspire a lot of awe: think of the devastating power
unleashed by something roughly as small as a tennis ball, in an atomic
bomb.

We can do these astonishing things thanks to our understanding of
how the world works. That’s Physics.

Many things can be said and have been said about science and physics.
Rather than repeating what’s been already written in many excellent books,
I invite you to take a break here and go read their introductions. Choose as
you please; compare what they say; don’t limit yourself to popular books.
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1. Physics? 1.1. Several possible formalisms or “languages”

. . . . . . . . .

1.1 Several possible formalisms or “languages”

Physics can be expressed and written from wildly different points of
view, using wildly different principles. Let’s call these “different physics
languages”; a more technical name is “physics formalisms”. One may
approach a physics phenomenon or problem in terms of Lagrangeans, or
Hamiltonians, or fibre bundles, or categories, or action principles, or many other
formalisms. These formalisms or languages are not completely separated;

δ

∫
𝐿d𝑡 = 0 𝐿 =

1
2𝑚𝑣2

𝑭 =
d
d𝑡 𝑚𝒗 𝑭 = 0

Example of two different
formalisms (red, blue) ex-
pressing the same physical
phenomenon.

we know how to translate among them. In “doing” physics, one may jump
among formalisms, because some ideas may be easier to express, or some
results easier to find, in one formalism than another. No matter which
physics formalism you choose, the results and the concrete applications
are still the same. The choice is to a great extent subjective, based on your
aesthetic tastes. You see that in “doing” physics you can express your
personality and put your own artistic touch; this is why it’s such a cool
subject (and other scientific subjects are like this too).

In these notes I’m choosing one particular formalism: the one that for
me is the most easily visualizable; because I believe that visualization can
be beneficial in learning new things. Or maybe I’m choosing it just because
I like it best. I encourage you to explore how the physics you’ve learned is
expressed in other physics formalisms; maybe you’ll like another physics
formalism better.

The formalism we’ll be using might be called “field theory”. Roughly
speaking it takes as starting point the ideas of space and time, or better
spacetime, in which there are different kinds of “stuff”. It expresses
the regularity and patterns that we observe in physical phenomena as
“budgets” about the different kinds of stuff, and of relations between these
kinds. Please don’t take the description just given too literally; it’s just
meant to give you a very vague idea of the field-theoretical viewpoint.

It goes without saying that all these “physics languages” are to a great
extent mathematical.

One reason is that numbers allow us to convey information in a concise
and precise way. Imagine you have to tell someone, who doesn’t know
Bergen, where in Bergen you are right now, to within 10 m. You can do
that with a description, “. . . and there’s a building called so-and-so which

11



1. Physics? 1.2. Quantities: primitive and derived

looks like so-and-so. . . ”, which would be lengthy and tricky. Or you can
just give two numbers: latitude and longitude:

60.369 40, 5.3518 .

And in these two numbers all digits are important; for instance, the latitude
is not 60.369 47.

But the most important reason is that mathematics allows us to describe
and follow the patters and variety of physical phenomena in a greatly
concise and precise way. And to develop their relationships in a rigorous
way. All our present technology would have been impossible to discover,

“There is nothing that can be said
by mathematical symbols and re-
lations which cannot also be said
by words. The converse, how-
ever, is false. Much that can be
and is said by words cannot suc-
cessfully be put into equations,
because it is nonsense.”

Truesdell 1966

and would be impossible to realize, without the mathematical language of
physics.

I invite you again to read what many good texts say about the relation-
ship between physics and mathematics. No point repeating here what is
said better elsewhere.

1.2 Quantities: primitive and derived

One topic must be briefly discussed because it’s important for understand-
ing the notes that follow. It’s the distinction between primitive and derived
quantities.

I shall assume that you already know what a physical quantity is.
Examples are: position, duration, velocity, pressure, energy, temperature.

A derived quantity is one that is defined in terms of other quantities.
For example, velocity 𝒗 (more precisely: average velocity) is defined as the
ratio between a distance 𝒅 (a vector) and a time duration 𝒕 :

𝒗 := 𝒅
𝑡

where the symbol “:=” means “is defined as” or “is defined by”. This
means that in principle we could avoid using the word “velocity” and
the symbol “𝒗” altogether, and instead always speak about distance and
duration, using their symbols. It would lead to very long sentences and
formulae and would be extremely inconvenient, but it could be done. The
definition of a derived quantity often tells us how that quantity can be
measured.

A derived quantity is defined in terms of other quantities, and these
may in turn be derived quantities, that is, defined in terms of still other

12



1. Physics? 1.3. Physical dimensions and units

quantities, and so on. But at some point this chain of definitions must
come to an end, otherwise we would go around in circles.

“you have to be in some frame-
work that you allow something
to be true. Otherwise you’re
perpetually asking ‘why’”. (see
video1).

A primitive quantity is one that we do not define in terms of other
quantities. Primitive quantities are the building blocks from which we
define all others. That they are not defined in terms of others doesn’t mean
that we cannot try to explain them. But such explanations must be taken
as informal and heuristic. Primitive quantities are often explained through
metaphors and by appealing to intuition. You must always be wary of such
explanations, because they may fail you spectacularly in some situations.

Often we have a choice about which quantities should be primitive
and which should be derived. For instance, energy can be defined, in a
somewhat complicated way, in terms of quantities like work and heat,
which would then need to be taken as primitive. Or we can take energy
as primitive, and define work and heat in terms of it. This second choice
can be more convenient to develop a physical theory. It often happens that
a quantity is very convenient for building a theory, if used as primitive;
but difficult to understand intuitively. Vice versa, a quantity can be very
intuitive but lead to a complicated theory. Among quantities which we’ll
take as primitive are: time, space and length, matter, energy, momentum,
entropy, temperature, and several others. All will be discussed soon.

1.3 Physical dimensions and units

Measurement is the process by which we determine the value of a physical
quantity. Measurements can be extremely complex, and can extremely
different even if they are about the same quantity. Consider the ways we
can measure the mass of a football, compared to the ways we can measure
the mass of the Sun.

To each quantity we associate a physical dimension. The term ‘dimen-
sion’ here has nothing to do with physical extension, as in “the dimensions
of this box”; be careful not to confuse the two. Usually it’s clear which one
is meant from the context. Physical dimensions help us avoid making oper-
ations that don’t make sense with some quantities. For example, it doesn’t
make sense to sum up the volume of a body of water with its temperature;
and indeed the volume has dimension length3, whereas temperature has
dimension temperature, and quantities with different dimensions cannot
be added up.

With each physical dimension we can associate a measurement unit,
which expresses a basic standard for comparing the measurement results

13
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1. Physics? 1.4. Informal tips about units and maths

of similar quantities. For example, we could use the minute or the second as
units to measure time.

One can choose a basic set of physical dimensions from which to define
all others, and for these a set of standard units. Here we shall follow the
International System of Units (SI)2 (see also NIST Special Publication 8113).

The topics of measurement and physical dimensions, which are studied
in metrology and in dimensional analysis, could occupy an entire course by
themselves. I shall assume that you already know their basics notions and
that you read about the SI.

The measurement of some physical quantities consists in just one
number with associated physical dimension; we shall call such quantity a
scalar. The measurement of other physical quantities consists instead in a
triplet of numbers with associated physical dimension; we shall call such
quantity a vector.

- What’s scalar or vector depends on the theory

Scalar and vector have very specific and slightly different meanings in
different theories, so don’t take the definitions used here as universal.
For example, in these notes and in Newtonian mechanics we call energy
density a scalar, but in general relativity it cannot be called a scalar.

1.4 Informal tips about units and maths

1.4.1 Importance of units

Units are very important and must always be written for several reasons.
First, a number without units doesn’t tell us anything. If I tell you “the

place is at a distance 100 from here”, you have no idea how far the place is.
“100” what? 100 metres? 100 kilometres? These are completely different
distances.

Second, units give us useful information about mathematical objects
and their physical relationships and measurement. If you see the expression
“3 m/s”, then there’s a strong possibility that that’s a velocity. If you see
the expression “5 J/m2”, then you have a hint that it could be measured by
measuring an energy and then dividing by an area.

Third, because of the previous reason, keeping track of units often
allows us to quickly catch errors in solving a physical problem.

14
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1. Physics? 1.4. Informal tips about units and maths

1.4.2 Variables and units

When a physical quantity is denoted by a symbol or variable, keep in mind
that a unit is “contained” in the symbol, so to speak. For example if the
variable 𝑡 denotes a time, then it includes some time unit, say seconds. This
becomes apparent when we write the value of the symbol, for instance
“𝑡 = 120 s”. The unit is not predetermined, but it must correspond to
the dimension of that quantity. We could for instance write “𝑡 = 2 min”
instead; the two expressions are completely equivalent.

This fact must be kept in mind when combining symbols. For example,
if 𝑑 is a distance and 𝑡 is a time, then writing 𝑣 = 𝑑/𝑡 tells us that 𝑣 is a
velocity, and it has appropriate units that come from 𝑑 and 𝑡, for instance
m/s.

Units otherwise behave just like literal constants for all mathematical
purposes, just like the letter ‘𝑎’ in the expression ‘𝑎 𝑥’. This is why they
can be simplified; for instance:

3 mol/s · 5 s = 3 mol
̸s · 5 ̸s = 15 mol .

1.4.3 Mathematical functions and units

Particular care must be taken with trigonometric and exponential func-
tions, like sin(), cos(), tan(), exp(), log(); these functions only admit a
dimensionless argument (which for the trigonometric ones corresponds
to radians). So there cannot be units like ‘s’ or ‘m’ within these functions:
we must make sure that any units present within cancel out.

This makes sense, because we wouldn’t know how to interpret the
argument otherwise. Suppose you read “cos(60 s)” somewhere: how much
is that? If we say “just discard the unit”, we would have

cos(60 s) ?
= cos(60) ≈ −0.95

but wait: 60 s ≡ 1 min, so we could equivalently write “cos(1 min)”. Then,
according to the hypothetical rule “just discard the unit”, we would have

cos(60 s) ≡ cos(1 min) ?
= cos(1) ≈ +0.54

a completely different result!

15



1. Physics? 1.4. Informal tips about units and maths

For this reason an expression like ‘cos(𝑡)’, with 𝑡 denoting time, doesn’t
make sense: there’s a time unit in the argument of cos(). If we want to
express an oscillation with time, we must write instead something like

cos
(
𝑡

𝑇

)
where 𝑇 is the period of the oscillation, a symbol which also includes a
time unit, which simplifies with the one in 𝑡. If the period of the oscillation
is 𝑇 = 1 s then we can also simply write

cos(𝑡/s)

This expression is now unambiguous: suppose that 𝑡 = 60 s ≡ 1 min, then

cos(𝑡/s) = cos(60 s/s) = cos(60) ≈ −0.95
= cos(1 min/s) = cos(1 · 60 ̸s/̸s

)
= cos(60) ≈ −0.95

Also remember that the results of trigonometric and exponential
functions are dimensionless numbers, so an expression like ‘3 cos(. . . )’
denotes a pure number, with no units. If you want to express that the
result is a length, the appropriate units must appear. We can for instance
write

𝐿 cos(. . . )
where 𝐿 is a length, and therefore includes some kind of length unit such
as ‘m’. If this length is, say, 𝐿 = 2 m we can also simply write

2 cos(. . . ) m

1.4.4 Units and derivatives

When we follow the rules above, all other mathematical operations auto-
matically take care of everything. The derivative, for instance, is calculated
in the usual way, treating any visible units as literal constants. Let’s see a
concrete example. This expression

𝑥(𝑡) = 2 cos(𝑡/s) m

says that the position of some object oscillates with time, between the
values −2 m and +2 m. When 𝑡 = 0 s, the position is 𝑥 = +2 m. The position
𝑥 = −2 m is reached when the argument of cos() is π, that is

𝑡/s = π ⇒ 𝑡 ≈ 3.14 s .

16



1. Physics? 1.5. What is “fundamental” physics?

The velocity of the object is given by the derivative of this expression ¾ § 2.4 page 28
with respect to 𝑡. Let’s calculate it treating all unit symbols as literal
constants:

d𝑥(𝑡)
d𝑡 =

d
d𝑡

(
2 cos(𝑡/s) m

)
= 2

[
− sin(𝑡/s) · 1

s
chain rule

]
m = −2 sin(𝑡/s) m/s

and you see that the correct units for velocity have automatically appeared.

1.5 What is “fundamental” physics?

But what’s the “ultimate” goal of physics? What’s “fundamental” physics?
The answer to this question is again subjective – also in this case physics
lets you express your proclivities and personality. In the history of physics
one can probably identify two main conceptions of “fundamental” physics.

For some physicists it is about finding the ultimate building blocks, so
that one day we can say “. . . and these are the constituents, and they obey
these equations”. The history of physics seems to show that this goal is
overturned every few generations. And yet every generation says “Now
we almost have the complete picture – it’s right behind the corner. It’s true
that previous generations thought they almost had it, and turned out to
be wrong. But this time is different, this time we have the real deal!”. The
theoretical and particle physicist Geffrey Chew4 depicted this situation as
in fig. 1.1. For this reason some physicists are a little sceptical about this
goal; maybe it’s a never-ending structure, with surprises at every deeper
look.

So for other physicists fundamental physics is about finding some
point of view or mathematical structure that is rich enough to make useful
predictions, and yet flexible enough to accommodate any new patterns or
objects that we might discover. In a manner of speaking, it is about finding
“patterns of patterns” or “laws about physical laws”.

The two conceptions above are not mutually exclusive, and both are
always pursued, even if time-changing fashions may emphasize the one
or the other.

In these notes we take a point of view slightly closer to the second
conception. This will also be reflected in the main division between physical
laws that we’ll draw in Chapter 5.
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1. Physics? 1.5. What is “fundamental” physics?

Figure 1.1 (Continues on p. 19) The progress of “fundamental” physics, from Chew 1970 as
reproduced in Truesdell 1987
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1. Physics? 1.5. What is “fundamental” physics?
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Chapter 2

Building blocks: Time and space

If we want to describe the motion of a material point, we
give the values of its coordinates as a function of time.
However, we should keep in mind that for such a
mathematical description to have physical meaning, we
first have to clarify what is to be understood here by
“time”. We have to bear in mind that all our propositions
involving time are always propositions about simultaneous
events. If, for example, I say that “the train arrives here at 7
o’clock”, that means, more or less, “the pointing of the
small hand of my clock to 7 and the arrival of the train are
simultaneous events”.

A. Einstein 1905a

2.1 Time

Time is a primitive quantity. We understand the notion of time intuitively,
even if it’s difficult to explain (that’s why it’s taken as primitive). In 1905,
with the theory of relativity, part of our everyday intuition about this notion
was seriously shaken. For many years afterwards our old intuition could
still be used in practice and in applications. But the new, correct intuition is
becoming more and more important in everyday life and technologies. For
example, GPS navigation – which we use everyday from leisure activities
like hiking or sightseeing to more critical ones like aeroplane landing –
critically depends on the correct notion and intuition of time.

Let’s see how our traditional intuition goes astray with a concrete
experiment. Here’s Alice, Bob, and Charlie. They have extremely precise
clocks built in exactly the same way. They stay very close to one another
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and synchronize their clocks. Still keeping close, they go around, maybe
on an aeroplane or space ship, and all the time they check their clocks.
They notice that their clocks stay perfectly synchronized all the time, no
matter where they go and what they do.

At some point they separate, each one going around independently.
One of them might stay in place, another might take a helicopter, and
another might go for a trip on Mars and back.

Alice and Bob at some point meet again, and compare their clocks.
They see that their clocks aren’t synchronized anymore; the difference
could be as small as microseconds, or as large as years. In fact, if this time
discrepancy is large, they would notice that they themselves have aged
differently; so time discrepancy doesn’t affect the clocks only. Let’s say for
concreteness that Alice’s clock is ahead of Bob’s, or equivalently that Bob’s
is behind Alice’s. Note the following aspects:

First, neither Alice or Bob can say “my clock was wrong”: neither has
noticed anything strange about the “passage of time”.

Second, they might wonder what’s the time on Charlie’s clock. But
Charlie is at some distance away. They could decide to contact Charlie
via radio, say, and ask “what shows your clock right now?”. But they
would notice that there’s a delay, even if extremely small, in the radio
transmission; so it’s unclear to what time would Charlie’s answer apply.
If we say “let’s account for the radio-signal speed”, we see that there’s a
logical problem: speed is distance divided by time, and here we have a
problem in exactly determining what’s the “correct” time! So we would be
reasoning in circles. Besides, even neglecting these difficulties, Charlie’s
answer could reveal a time that completely different from Alice’s and from
Bob’s – it could be years ahead or behind both of theirs!

Third, if they now stay together, they will see that their clocks remain
exactly synchronized, besides the discrepancy they noticed when they
met. This discrepancy doesn’t increase or decrease. They may even re-
trace together Alice’s and Bob’s previous trips; their clocks still remain
synchronized.

The experience just described will occur again any time two or more of
them meet. There could be a hundred observers like Alice, Bob, Charlie,
initially at the same place and synchronized. Whenever two or more of
them meet after having been separated, they will notice discrepancies in
their clocks. But their clocks will have exactly the same time lapses as long
as they stay together. See the illustration in fig. 2.1
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Figure 2.1 Illustration of the experiences of Alice (dashed �), Bob (solid f), Charlie
(dot-dashed �) with time. The page represents a two-dimensional spacetime, and is
followed from bottom to top.
Bottom: Alice, Bob, Charlie stay close and observe their clocks are perfectly synchronized
from 12:00 to 12:10, then they separate.
Right: Charlie visits a region near a strong mass-energy source. Upon meeting again
with Bob, the two notice their clocks differ: 16:00 for Bob, 12:30 for Charlie. Yet this clock
difference stays the same while they travel together for 10 min.
Left: Alice wanders around travelling at high speed with respect to the fixed stars. At
some point she wonders what’s the time “now” for Bob and Charlie. Obviously this
question doesn’t make sense, because (1) when Bob and Charlie are together their clocks
differ – impossible to say what’s “the” time at their position; (2) not clear which instant in
Bob & Charlie’s trajectory should be considered as “now” (yellow dashed lines).
Top: When all three meet again, their clocks have completely different readings; and they
themselves have aged differently. But their clocks run again at the same rate as long as
they stay close.
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Consider for a moment an imaginary world in which these exper-
iments had given a different kind of result. According to Newtonian
mechanics, whenever two or more initially synchronized observers like
Alice, Bob, Charlie had met, their clocks would have always shown
exactly the same time. If one year, 23 days, 8 hours, 9 minutes, and
3.045 399 283 240 992 663 02 seconds have passed for you since you last met
Alice, you’d see that exactly the same amount of time has passed for her
when you two meet again. If you think about it, in this case it would have
beeen somewhat natural to think “right now, the clocks of far-away Alice,
Bob, Charlie must show the same time as mine” (even though you have no
real experimental way of confirming that).

“In 1976, the International
Astronomical Union introduced
relativistic concepts of time and
the transformations between
various time scales and reference
systems. [. . .] Now [. . .] it is
necessary to base all astrometry,
reference systems, ephemerides,
and observational reduction
procedures on consistent
relativistic grounds. This means
that relativity must be accepted
in its entirety, and that concepts,
as well as practical problems,
must be approached from a
relativistic point of view.”
Kovalevsky & Seidel-
mann 2004

But that’s an imaginary world. In our world is the more complicated
situation described initially that holds. Only one conclusion can be drawn
from these experimental results: Time is not some sort of universal
quantity. It is, so to speak, “local” to a person or clock, or to a group of
persons or clocks that stick together. This also means that it doesn’t make
sense to ask questions like “what can be the time for far-away Charlie, right
now?”.

The time measured by a specific observer is called the proper time
of that observer. Luckily we know more about how the proper times
of separated observers can differ when they meet again. It turns out –
according to our current understanding – that the time differences depend,
roughly speaking, on how fast the observers are moving with respect to
one another and to matter around the universe, and on how much energy
is contained in the regions they travel. The general theory of relativity
gives us the equations determining any such proper-time differences.

The situation depicted in the experiments above is real. It can be
measured, for example, comparing initially synchronized clocks that have
been put in aeroplanes flying in different directions. Most importantly,
it affects everyday relevant technologies such as the Global Positioning
System. Formulae from general relativity appear in your phone’s GPS
software; see for instance § 20.3.3.3.3 of the Interface Control Document IS-
GPS-200 at https://www.gps.gov/technical/icwg/. It must also be taken
into account in the establishment and synchronization of time in our
everyday equipments:

International Atomic Time (TAI) is based on more than 250 atomic clocks
distributed worldwide that provide its stability, whereas a small number of
primary frequency standards provide its accuracy. Universal Coordinated
Time, which is the basis of all legal time scales, is derived from TAI. To
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allow the construction of TAI and the general dissemination of time, clocks
separated by thousands of kilometres must be compared and synchronized.
[. . .] The achieved performances of atomic clocks and time transfer tech-
niques imply that the definition of time scales and the clock comparison
procedures must be considered within the framework of general relativity.

(Petit & Wolf 2005)

“The plot for Cesium [. . .] char-
acterizes the best orbiting clocks
in the GPS system. What this
means is that after initializing
a Cesium clock, and leaving it
alone for a day, it should be
correct to within [. . .] 4 nano-
seconds. Relativistic effects are
huge compared to this.”

Ashby 2003

In most everyday situations for us, who live on or nearby Earth and
move at speeds much smaller than 𝑐 with respect to one another, the
discrepancies between our proper times are so small that cannot be
measured with ordinary clocks or with our internal clocks. Consider a
person walking 10 m away from you and then immediately walking back
to you, at 1 m/s. The time elapsed for you will be 20 s, but for that person
will be 19.999 999 999 999 999 889 s, a difference of 10−16 s, which is the
error of an atomic clock. If human beings still exist in some decades or
centuries, with space travel they will probably have to deal more and more
with proper-time discrepancies also in everyday life.

For the most part of the rest of these notes, we won’t need to deal with
differences in proper time. But I recommend that you keep present how
time really works, and that these small time discrepancies exist and occur
all the time along your worldline.

Time has physical dimension of time and we shall for the most part
measure it using the unit second, symbol ‘s’.

2.2 Space

Together with the notion of time, also the notion of space loses some of
its traditional intuition. Several observers in motion with respect to one
another will generally disagree on the dimensions of an approximately rigid
object in their vicinity. For objects that are far away from an observer, the
very notion of “distance” becomes tricky has different and non-equivalent
definitions; one must be very careful on which definition is being used.

We shall not delve further into these peculiarities of time and space.
Keep simply in mind that phenomena happen in spacetime, and that
there’s no way to attribute a universal time, nor a universal position in
space, to a physical event. There is one absolute: whoever locally measures
the speed of light, will find the value

𝑐 := 299 792 458 m/s (2.1)
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This value is exact by definition, and serves as a way to define a local
notion of space and distance.

Space has physical dimension of length and we shall for the most part
measure it using the unit metre, symbol ‘m’.

2.3 Coordinate systems and events

It is necessary to have a way for distinguishing physical events and
phenomena and locating them in spacetime. This is achieved through a
coordinate system.

A coordinate system assigns four numerical labels to every point in
spacetime. Often these labels have some kind of physical meaning – like

A lattice of clocks and meters,
defining a spacetime coordin-
ate system (from Taylor &
Wheeler 2000)

the proper time elapsed for a specific clock, or the distance from some
event as measured by a specific observer – but they don’t need to.

A coordinate system also solves the problems coming from proper-time
and space discrepancies among different observers. We can assign to every
physical event a coordinate time and a coordinate spatial position, which are
the same for all observers, because decided by agreement. Coordinate
time doesn’t have a strict physical meaning, and will generally be different
from the proper times registered by different observers. It can nevertheless
be used for “doing physics”, and it is the time we shall most often use
in our equations. A coordinate time commonly used for Earth-physics
purposes is Universal Coordinated Time (UTC)1. The clock on your phone,
and on devices that get synchronized via internet, shows UTC, not your
proper time. An observer on Earth at 0 m over sea level, and not moving,
measures a proper time exactly equal to UTC (besides small variation
coming from the movements of Solar System bodies). Observers at other
altitudes or moving with respect to Earth’s surface notice that their proper
times are slightly different from UTC.

Up to now we have often used the word ‘event’, informally taking its
meaning for granted. Let’s be more precise: we call event or spacetime
point an extremely small region of space – a point – that only lasts for a
very small lapse of time – an instant. The name ‘event’ is used because
typically we approximately identify such a point and instant by means of
a physical phenomenon of limited spatial extension and short duration,
such as the collision of two subatomic particles. The sudden burst of a very
small soap bubble can be considered as an event in some circumstances;
but something like “a tennis ball” cannot be considered as an event, mainly
because a tennis ball exists for quite a long time, not just for a short instant.
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From a four-dimensional spacetime point of view, a tennis ball could be

https://xkcd.com/2882

characterized as a line: a worldline.
We shall often denote the four coordinates of a coordinate system by

the letters
(𝑡 , 𝑥, 𝑦, 𝑧)

where 𝑡 is a coordinate time, usually UTC, and (𝑥, 𝑦, 𝑟) determine a spatial
position. The triplet of spatial coordinates is often denoted by the vector 𝒓 :

𝒓 := (𝑥, 𝑦, 𝑧) or 𝒓 := [𝑥, 𝑦, 𝑧] or 𝒓 :=

𝑥

𝑦

𝑧


use round brackets ‘()’ or square brackets ‘[]’, and horizontal or vertical
notation as you prefer.

It is always important to specify how the coordinate system you’re using
is defined. The definition of the spatial coordinates (𝑥, 𝑦, 𝑧) is typically
different from problem to problem. We shall typically use coordinates that
form π

2 rad ≡ 90◦ angles with one another; but their directions and their
origin – that is, where they have value 𝑥 = 𝑦 = 𝑧 = 0 m – always depend
on the problem, so make sure you always specify them.

Whenever we speak of a “region of space” or of a “surface in space”,
we mean a 3D or 2D region at some specific coordinate time 𝑡.

Some physical phenomena happen approximately along a line, in one
dimension; or on a surface, in two dimensions. In these cases we can omit
two or one of the spatial coordinates, assuming they have some constant,
unimportant values; and we can simply write, for instance, (𝑡 , 𝑥) or (𝑡 , 𝑥, 𝑦)
as our coordinates.

« Exercise 2.1

Consider a clock at rest on the Earth’s surface, at a distance 𝑟e from
the Earth’s centre; and a clock on a satellite, for instance a GPS
satellite or the International Space Station2, right above the first
clock, at a distance 𝑟s from the Earth’s centre. An observer by the
clock on Earth measuring a time lapse Δ𝑡e will see the clock on the
satellite has having run for a time lapse Δ𝑡s, and vice versa (note that
this “vice versa” only holds in this specific situation!). The relation
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between two time lapses is approximately given by




Δ𝑡s
Δ𝑡e

=

√
1 − 2 𝐺

𝑐2
𝑀
𝑟𝑠√

1 − 2 𝐺
𝑐2

𝑀
𝑟𝑒

where 𝐺 ≈ 6.7 × 10−11 m3/(kg s2), 𝑐 = 3.0 × 108 m/s, and the Earth’s
mass 𝑀 = 6.0 × 1024 kg.

1. Take the case of a GPS satellite, with 𝑟e = 6.4 × 106 m and 𝑟s =

2.6 × 107 m (NASA data3). If you, on the ground, measure a time
lapse of Δ𝑡e = 10 years, what’s the difference, in seconds, with the
time lapse Δ𝑡s you see on the satellite?

2. If the time lapses are large compared with the time needed to go
from ground to orbit or vice versa, then Δ𝑡s/Δ𝑡e is also the ratio
between the real ageing of a person who’s been in orbit and one
who’s been on the ground, when they meet again.

Now consider the case with a black hole instead of Earth. The
formula above can still be applied as an approximation.

In the movie Interstellar4, two astronauts go on Miller’s planet, at
a distance 𝑟e from the black hole Gargantua, and stay there for
3 hours, leaving one astronaut in orbit at a distance 𝑟s ≈ ∞ (the
distance is large enough that it can be approximated as infinity).
When they meet again, the latter astronaut has aged 23 years.

Given that Gargantua’s mass is 𝑀 = 2.0 × 1038 kg, calculate the
distance 𝑟e of Miller’s planet from the black hole.

2.4 Velocity and acceleration

In some situations the spatial coordinates 𝒓 = (𝑥, 𝑦, 𝑧) may turn out to be
functions of the time coordinate 𝑡; the typical example is when we describe
how the spatial position of a small body changes with coordinate time. We
can write this functional dependence in different ways, for instance

𝒓(𝑡) or
[
𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)

]
.

So 𝒓 is a vector function of time, which simply means that we have a
collection of three functions of time.
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If we take the derivative of each coordinate with respect to the time 𝑡,
we obtain the coordinate velocity

𝒗(𝑡) := d
d𝑡 𝒓(𝑡) =

[
d
d𝑡 𝑥(𝑡),

d
d𝑡 𝑦(𝑡),

d
d𝑡 𝑧(𝑡)

]
which is also a vector.

] Dot-notation for time derivative

The derivative of some quantity with respect to coordinate time is
often denoted by a dot over the quantity. So we can also write

𝒗(𝑡) = ¤𝒓(𝑡) =
[
¤𝑥(𝑡), ¤𝑦(𝑡), ¤𝑧(𝑡)

]
The coordinate velocity is usually different from the physical velocity,

which an observer would measure using proper time and space, for instance
using bouncing light rays. In many everyday situations the difference
between coordinate and physical velocity is so small that it can be neglected.
But in situations involving subatomic particles at high speed, for example,
one must take into account that the two velocities are different.

Taking the time derivative once more we obtain the coordinate acceler-
ation, also a vector:

𝒂(𝑡) := d
d𝑡 𝒗(𝑡) =

d2

d𝑡2 𝒓(𝑡) =
[

d2

d𝑡2 𝑥(𝑡),
d2

d𝑡2 𝑦(𝑡),
d2

d𝑡2 𝑧(𝑡)
]

which is also a vector.

£ Acceleration in relativity theory

In relativity theory, acceleration acquires a special physical significance,
because it includes the effect of gravity, and its calculation does not
involve just a time derivative. For instance, let’s say that you are standing
still on the ground, and let’s use a coordinate system where 𝑥 points in
front of view, 𝑦 to your left, and 𝑧 points upwards. Then your coordinate
velocity is 𝒗 = (0, 0, 0) m/s also according to relativity theory. But the
spatial part of your acceleration is approximately (0, 0, 9.8)m/s2, not zero!

The definitions and values of acceleration according to relativity the-
ory and according to Newtonian mechanics are therefore quite different
even in everyday situations. In these notes we’ll mean the Newtonian
definition of acceleration, unless stated otherwise.
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« Exercise 2.2

1. Here are the three components of a time-dependent velocity
vector; the variable 𝑡 is the time, and therefore has dimension time.
Introduce units ‘s’ and ‘m’ appropriately in such a way that the
expression is dimensionally correct:

𝒗(𝑡) =
[
4, cos(3 𝑡),− exp(8/𝑡)

]
2. The position vector of a satellite is given below. Calculate the

satellite’s velocity and acceleration vectors:

𝒓(𝑡) =


2.0 × 107 cos

(
𝑡

13 751 s
)

2.2 × 107 sin
(

𝑡
13 751 s

)
0

 m

3. What is the satellite’s velocity at 𝑡 = 6875 s? What is the magnitude
of the velocity (that is, the speed)?
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Chapter 3

Building blocks: “Stuff”

For Euler, clarity was the hallmark of truth. [. . .] To him we
owe also the brilliant imagination of the internal pressure
in generality, the pressure field as equipollent to the action
of the fluid outside any imaginary closed diaphragm upon
that within. [. . .] I remark upon it in emphasis of the role
of imagination and the importance of quantities which can
only be thought of and cannot in themselves be measured.

C. A. Truesdell 1956

3.1 Seven primitive quantities with three basic properties

Besides time and space, our physics formalism includes around seven
more quantities that we take as primitive:

] Seven primitive quantities

matter
electric charge
magnetic flux

energy
momentum

angular momentum
entropy

Technically they are called fields, for reasons we shall shortly see.
Recall that primitive quantities cannot be defined: we can only try to

understand them intuitively, for example through their properties. Some

32



3. Building blocks: “Stuff” 3.1. Seven primitive quantities

of the seven primitive quantities are easier to grasp intuitively than others.
But all seven primitive quantities have three basic properties in common.
First of all, of each we can ask, or rather, measure:

] The two basic measurements that can be made on the seven quantities

1. How much of this quantity is in a particular three-dimensional
region of space at a particular time instant?

2. How much of this quantity flows through a particular two-
dimensional surface during a particular time lapse?

We can ask these questions of any region of space and any time lapse, and
the surface in the second question can be moving and deforming. The
results of the two measurements above are numbers, which in general
can be positive or negative, for scalar quantities; or vectors for vector
quantities.

Often we consider the second question, about the flow through a
surface, in the case of a very short lapse of time, and divide the total
flow by that time lapse. So we have an alternative form of the second
measurement:

] Flux of a substance through a surface

2b. How much of this quantity is flowing through a particular two-
dimensional surface per unit time, at a particular time instant?

This is called the flux of the quantity through that surface.
The third property common to the seven quantities regards the two

measurements above.

] Extensivity of the seven quantities

If we consider two or more separate volumes, the amount of quantity
in the total volume is equal to the sum of the amounts in the separate
volumes.
Analogously for the flux through separate surfaces.

We say that each of the seven quantities is an extensive quantity
The basic measurements above can’t in general be made, and don’t

even make sense, for some other quantities. For instance, we cannot ask
“what’s the total amount of temperature in this region?”, or “how much
velocity is flowing through this surface?”.
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Thanks to the three properties above, each of the seven quantities can
be intuitively visualized as some kind of “stuff” that can be present at each
spacetime point, fills regions of space, and flows through surfaces. This
visualization is useful, but also comes with some warnings which we’ll
discuss later.

What’s remarkable about matter, electric charge, magnetic flux, energy,
momentum, angular momentum, and entropy, is that they are common
to all our main physical theories, approximate or not: from Newtonian
mechanics to general relativity and quantum theory; from subatomic
scales to cosmological scales. The physical meaning and mathematical
characterization of these quantities can be slightly different depending on
the physical theory and scale. For example, in quantum theory they are
mathematically represented by so-called operators rather than functions;
and at molecular scales entropy has a meaning connected with probability
theory. Yet, these seven quantities are really universal to our present way of
doing physics and of describing physical phenomena around and within
us.

Let us make a first acquaintance with these seven quantities. The
discussion that follows is meant as an introduction; we shall repeat and
say more about each quantity in later chapters.

Richard Feynman explains
the difficulty of “why” ques-
tions in a funny and insightful
video1.

Keep in mind that it is very difficult, if not impossible, to answer
questions like “what really is. . . ?” or “why really does. . . ?”.

3.2 Matter

Matter is a scalar quantity, with SI dimension amount of substance2, and
measured in units of moles (mol)3. Its flux is therefore measured in units
of moles per second (mol/s). In statistical mechanics and particle physics,
matter is often simply counted and so measured in dimensionless units,
rather than moles.

Matter is probably the easiest quantity to grasp intuitively; what we
ordinarily call “stuff” is matter. It is usually classified into several kinds;
the classification depends on the physical phenomena and physical theory
one works with, and is related to whether the kinds of matter can be
considered separately conserved, as we’ll discuss in Chapter 7.

In everyday phenomena not involving radioactivity4 or nuclear en-
ergy5, the different kinds of matter approximately correspond to the
non-radioactive chemical elements6: hydrogen7, helium8, lithium9, and so
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on. Note that some common everyday devices, such as smoke detectors,
do involve radioactivity.

In phenomena involving radioactivity or nuclear energy, the different
kinds of matter correspond approximately to baryons10, like protons and
neutrons; and leptons11, such as electrons. In particle physics, even more
subtle classifications of matter are made, into kinds that seem to be
conserved, like electronic-leptons, muonic-leptons, and others. This kind
of research is still open, but it seems that the total amount of baryonic and
leptonic matter, independently of the kinds into which it can be classified,
is always conserved. Note that we’re using the term ‘matter’ in a sense
that includes anti-matter, such as positrons.

The total amount of matter in a region can be negative. “Negative matter”
is what’s usually called anti-matter12. Anti-matter appears in small amounts
in everyday life, for example in connection with common radioactivity
processes. It is also created and used in medicine, in positron-emission
tomography (PET)13 scans.

In these notes we shall usually not consider distinctions between
different kinds of matter, making some exceptions for discussions about
chemical reactions and nuclear phenomena.

] Matter: notation

The amount of matter in a region is usually denoted with 𝑁 , and
flux of matter with 𝐽. In chemistry we usually specify what kind of
matter we are speaking about, writing for instance 𝑁Ca = 5.3 mol, to
indicate an amount of 5.3 mol of calcium14 atoms.

- Matter is different from mass or energy

It is important to clearly distinguish matter from mass or energy. Mass
can be considered a property of matter, but the two are different. In
nuclear reactions, for instance, the mass of some amount of matter may
change, even if the amount of matter stays the same.

As far as we know, the total amount of energy associated with an
amount of matter is always positive, whether the amount of matter
is positive or negative (antimatter). This is the reason why antimatter
“falls” just like positive matter, a fact that has been experimentally
confirmed: see Anderson et al. 2023.
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« Exercise 3.1

According to statements on symmetrymagazine.org15 and quantum-
diaries.org16,

The average banana (rich in potassium) produces a
positron roughly once every 75 minutes.

Unfortunately the original site where the this statement was dis-
cussed, and the corresponding calculation made, seems not to exist
anymore.

1. Do a little research and find out whether this statement is true.

2. From your research, approximately quantify the flux of positrons
around an ordinary banana, expressing it in particles/s.

How many positrons do ba-
nanas produce?

3.3 Electric charge and magnetic flux

Electric charge is a scalar quantity, with SI dimension electric charge17

(equivalent to electric current×time), and measured in units of coulombs
(C)18. Flux of electric charge is called electric current, and measured in units
of amperes (A = C/s)19.

Electric charge is a quantity that is easily grasped in our everyday
experience, and doesn’t need much comments.

“sketch of the magnetic lines of
force in a magnetic filament ex-
tending up through the photo-
sphere.” Parker 1974a

Magnetic flux is a vector quantity, with SI dimension magnetic flux20,
and measured in units of webers (Wb)21.

The electromagnetic field is most commonly represented by vectors
associated to each point in space. But it can also be interpreted and
visualized as a collection of moving, oriented tubes or lines, either closed or
extending indefinitely; somewhat analogously to how we visualize matter
and charge, as moving blobs or points, but with one more dimension. This
interpretation goes back to Faraday (1846), Maxwell (1855), and later Dirac
(1955) among others, and today is conveniently used in some fields such as
solar physics22, for example to study sunspots23 (see Ryutova 2018). From
this point of view, the voltage turns out to be the flux of the magnetic flux;
it is indeed measured in volts (V), equivalent to webers/second.

Electromagnetism and this particular visualization of it are very fascin-
ating topics, but we shall not discuss them in these notes.
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3.4 Energy

Energy is a scalar quantity, with SI dimension energy, and measured in
units of joules (J); its flux is measured in units of watts (W = J/s).

Equivalently we can speak of mass, with SI dimension mass, and
measured in units of kilograms (kg)24; its flux is measured in kilograms per
second (kg/s).

The notion of energy is extremely important today, and central in many
world-wide important discussions and worries – think of the “energy
crisis”, “renewable energy”, and so on. It is somewhat funny that despite
this importance it’s actually difficult to answer ‘what is energy, really?’.
Often we speak about energy as something that “flows”, is “transported”,
“converted”, “stored”, and similar visualizations. This intuition will be
enough in these notes. The notion of mass is also very intuitive in our
everyday life; we associate it with the difficulty in setting objects into
motion, or with the weight of objects.

From Relativity Theory and experimentally we know that energy and
mass are the same quantity, and in these notes we shall emphasize this
experimental fact.

3.4.1 Energy and mass are the same

Let’s see some examples of why it is impossible to make a real distinction
between energy and mass. The following examples have been simplified
in some of their aspects, but their main point is valid.

Heated gas. Imagine we have a box with a given amount of gas, say 1 mol
of oxygen25 molecules. Using an extremely precise weighing scale, we
observe that the mass of the gas is, say, exactly

0.031 999 540 000 000 000 kg .

Now we heat the gas, providing 60 J, while making sure that not a single
molecule of oxygen gets in or out of the box. The temperature of the gas
increases by around 3 K. We observe that the weight measured by the scale
increases while we heat the gas, reaching the new value

0.031 999 540 000 000 668 kg .

Clearly the mass has increased, but no molecules were added! The ad-
ditional mass is the 60 J that we provided to the gas. Energy has weight,
energy is mass.
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Stretched or moving rubber band. Take a common rubber band, and
imagine again that we have an extremely precise weighing scale. The
rubber band, unstretched, has a mass of exactly

0.000 500 000 000 000 000 000 kg .

Now we stretch the band a little. According to Newtonian mechanics it
acquires ‘elastic energy’, which increases its initial internal energy by, say,
0.3 J. Now we weigh the rubber band again, while stretched, and observe
a mass of approximately

0.000 500 000 000 000 003 338 kg .

The extremely small difference of around 3× 10−18 kg from the initial mass
is exactly the elastic energy that we provided by stretching. Energy has

When we stretch a rub-
ber band, its mass increases
slightly – even if the amount
of rubber remains exactly the
same.

weight; energy is mass.
Now set the unstretched band in motion, so that according to Newtonian

mechanics it acquires a kinetic energy of, say, 0.2 J. If we could weigh the
band while in motion (but without moving the weighing scale), we would
measure a mass of approximately

0.000 500 000 000 000 002 225 kg .

The small difference from the initial mass is the new kinetic energy of the
band.

This case is actually connected with the example of the gas above. If
we observed the gas at a molecular level, we would interpret the energy
of 60 J provided to it as additional kinetic energy of its molecules. The
increase in weight was exactly this additional kinetic energy.

Hydrogen Bomb Test, 1954
(National Museum of Nuclear
Science & History26)

Fission and atomic bombs. The atomic bomb27 is a dark example of the
fact that mass is energy. In the case of nuclear fission, if we weigh the
amount of nuclear material, say within a box, before and after fission,
we observe that its mass has decreased. But we also observe that a great
amount of energy has been released out of the box.

Electric heater. As a final example consider a 1000 W electric heater,
which is radiating 1000 J in one second. The heater is also losing around
0.000 000 000 000 01 kg of mass every second owing to this heat radiation –
although it’s also acquiring the same amount of mass as electromagnetic
energy.
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“we are led to the more general
conclusion: The mass of a body is
a measure of its energy content;
if the energy changes by 𝐿, the
mass changes in the same sense
by 𝐿/9 · 1020, if the energy is
measured in ergs and the mass
in grams. ” Einstein 1905b

The equivalence between energy and mass is given by the famous
formula 𝐸 = 𝑚𝑐2, where 𝑐 is the speed of light, eq. (2.1). In their respective
units this gives

1 kg = 89 875 517 873 681 764 J (exactly)
1 J ≈ 0.000 000 000 000 000 011 126 5 kg

To grasp these numbers, consider that the mass of the rubber band in the
example above, 0.5 g, is comparable to the energy released by the atomic
bomb over Hiroshima28.

3.4.2 The practical use of the words ‘mass’ and ‘energy’

From the examples above it becomes clear that energy and mass are two
names for the same thing. But it also becomes clear that in our daily
experience we deal with energy-mass in two different ways:

On the one hand, we deal with huge (atom-bomb-like) amounts of
energy packed in very small volumes: the huge amount of energy that
goes together with objects like pens, keys, bicycles, cars, houses, and so
on. We move, push, pull these huge energy amounts from one place to
another, and even put them in our pockets. These energy amounts change
a little all the time; see the examples above. But the change is so small as
to be often undetectable with ordinary scales, and negligible for practical
purposes. We call this energy ‘mass’ and measure it with a unit – kg – that
doesn’t lead to ridiculously large numbers. And we also agree to neglect
the imprecision and fluctuation in its measurement, say any imprecision
under 0.000 001 %.

On the other hand, we also deal with the small energy changes and
exchanges in all these objects. These exchanges that are very important for
our daily life: they keep us warm, make our cells work, make our laptops
work. In dealing with these energy exchanges, we don’t care about the
huge energy reservoirs they come from. So we agree to measure them
with a unit – J – that doesn’t lead to ridiculously small numbers. And we
also agree not to be precise about the total amount in the reservoir from
which these energy bits come from.

As an analogy, consider when we speak about the amount of people in
different countries. We can say that in Norway there are 5 millions, and
in India 1500 millions, so in India there are 300 times more people. By
this we don’t mean that in Norway there are exactly 5 000 000 people and
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that India has exactly 300.000 000 times more people. These numbers are
changing slightly all the time; but we don’t care about differences of 10
or even 10 000 people. At the same time, think of when you have three
dear friends or relatives visiting you from abroad: the amount of 3 people
is now for you very important; and you don’t care about how much this
amount is compared to the total population of your country.

The distinction above is of course not clear-cut. In dealing with some
physical phenomena, for example with few molecules or in particle physics,
the distinction become too blurry and not useful anymore. And indeed in
these situations one often uses the terms ‘mass’ and ‘energy’ interchange-
ably, as well as a common unit for both (for instance electronvolts29).

In these notes we shall often use the expressions ‘energy-mass’ and
‘mass-energy’ to remember that these two words denote the same thing.

3.4.3 Different ‘forms’ of energy

We often speak of different forms of energy-mass. The most important for
us will be internal energy, kinetic energy, gravitational potential energy,
to be discussed later; another important one is electromagnetic energy.

In Chapter 9 we shall see that the differences among these energy forms
come from the way they are calculated from other quantities, like matter
or magnetic flux and electric charge. For example, if we know that in a
volume there’s an amount of a particular kind of matter, then we know
that there must also be an amount of energy given by a particular formula.
And if that matter is moving, then we have to add to the total an extra
amount of energy given by another formula. And if in that volume there’s
a gravitational field (that is, a particular kind of spacetime curvature),
then another extra amount must be added, given by yet another formula.
Similarly if we know that an electromagnetic field is in that volume.

We also speak of different forms of flux of energy. The most important
for us will be heat and mechanical power. The difference is again in how
these fluxes are calculated depending on whether there are also fluxes of
matter.

3.4.4 Amounts and forms of energy are coordinate- and
observer-dependent

An aspect of energy that must always be kept in mind is that the amount
of energy depends on the coordinate system we’re using. If someone

40

https://home.cern/tags/13-tev


3. Building blocks: “Stuff” 3.4. Energy

points at a specific region of space at a particular instant, and asks “how
much energy is there?”, we cannot give an answer until a coordinate system
is specified. Once the coordinate system has been chosen, then a precise
and unambiguous answer can be given. The same is true for the flow of
energy through a surface. This also means that observers using different
coordinates will usually assign different amounts of energy to the same
regions of spacetime.

“How much energy is there in
this volume at this instant?”
– This question cannot be
answered until we have spe-
cified which coordinate sys-
tem we’re using.

This is an important difference between energy on one side, and matter
and electric charge on the other side. For matter and electric charge, the
questions above can be answered unambiguously independently of any coordinate
system. But not so for energy. The reason of this quirky difference is
ultimately connected with the fact that time and space are also observer-
dependent.

This coordinate-dependence is not a problem: we must always specify
our coordinate system anyway, in order to agree on the time and position
of physical events. But it can cause problems when we calculate changes
in energy. If we first calculate or measure some amount of energy in a
coordinate system, then we calculate or measure another amount at some
later time in a different coordinate system, the difference between the two
amounts has no meaning whatsoever. In fact it could happen that there’s
no energy change at all in one coordinate system or in the other: any
change we found was just an artefact of mixing up coordinates.

- Amounts of energy-mass are coordinate-dependent

Never change coordinate system in the middle of energy calculations!

Also the distinction among different forms of energy is coordinate-
dependent. For instance, in one coordinate system we can say that a given
volume contains only internal energy; but in another coordinate system
that same volume can be said to contain internal and kinetic energy.

Hydrocarbon fuel particles30.
The small blobs have size of
around 2 × 10−8 m.

The distinction among different forms of energy also depends on the
observation scale and on the theory used. For instance, we can observe and
model the gas in a container on a scale of metres, seeing it as a uniform flux;
in this case we say that there’s internal energy in the container. But if we
observe and model the gas as a collection of molecules, on a microscopic
scale, then we say that there’s internal energy (of the single molecules) and
kinetic energy in the container (the total energy being the same, unless we
have changed coordinate system).
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The same is true of energy flux: what we call ‘heat’ on one observation
scale is ‘work’ on a finer scale.

] Energy-mass: notation

The amount of energy in a volume is usually denoted with 𝐸, or with
𝑚 if we describe it as mass. The total flux of energy will be denoted
by 𝛷.

« Exercise 3.2

In an hour, 14 people exit through a door. Taking the average human
weight to be 62 kg (Walpole et al. 2012), what’s the average energy
flux, in J/s, through that door?

3.5 Momentum

Momentum, also called linear momentum or translational momentum to
distinguish it from angular momentum, is a vector quantity. Its SI dimension
and units can be written in several equivalent ways; we shall keep in mind
especially these three:

force × time

N · s
≡

mass × length/time

kg · m/s
≡

energy × time/length

J · s/m

Since it is a vector quantity, it is usually expressed with three numbers,
typically the 𝑥-, 𝑦-, and 𝑧-components. In simplified problems where only
one or two dimensions are relevant, only the relevant components are
reported.

Momentum is a subtle quantity, even subtler than energy. Textbooks
that focus on Newtonian mechanics define it as the product of the mass
and the velocity of a body, usually written “𝒑 = 𝑚𝒗”. This relation,
however, is only valid in special circumstances, and cannot be used in many
everyday technological applications, especially when electromagnetism is
involved. And that relation is actually only an approximation even in the
circumstances where it’s used.

It is therefore convenient to separate our idea of momentum from
the idea of “objects” moving, keeping in mind that the latter idea is just
a particular case of momentum. Yet, momentum is indeed associated with
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translational motion of matter and of electromagnetic fields. Translational
motion is the kind of motion that leads to a new position in space. For
instance, when you walk from one place to a different one, you have
performed translational motion (note that translational motion doesn’t
need to be in a straight line).

The amount of momentum
within a volume at a given in-
stant is represented by a 3D
vector. The magnitude and
direction of this vector de-
pend on the coordinate sys-
tem we’re using.

Just as energy can be mentally visualized as a sort of fluid (although this
visualization comes with many warnings), also momentum can actually
be visualized as a sort fluid; but you must imagine it as a “fluid of vectors”.
Given a particular volume at a particular instant in time, and given a
coordinate system, we can speak of the total amount of momentum within
that volume. This amount is represented by a vector. You can imagine a
continuous collection of vectors filling the volume, possibly with different
directions and small magnitudes; the total momentum is the sum of all
these vectors. This visualization obviously comes with many warnings,
but it can be very useful if we are careful.

And just as energy, the total amount of momentum is coordinate-
dependent. So we have the same warning here:

- Amounts of momentum are coordinate-dependent

Don’t change coordinate system in the middle of calculations of mo-
mentum!

Flux of momentum is what we call force. A static force, like the one
you exert when you hold a bag, is often mentally visualized as a static
vector. In Chapter 4 we shall discuss a different visualization, in which
force is represented as a sort of flow of vectors.

] Momentum: notation

The amount of momentum in a region is usually denoted with 𝑷.
The flux of momentum is also called force and denoted with 𝑭 .

£ Momentum and energy flux are the same

According to Relativity Theory, momentum is energy flux (such as heat),
and energy flux is momentum. If we represent momentum with the
symbol 𝑷, and energy flux with the symbol 𝑸, the equivalence between
them is given by

𝑸 = 𝑷𝑐2 (3.1)

Compare this formula with 𝐸 = 𝑚𝑐2. From this point of view, you can
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think of momentum as “energy in motion”. This is consistent with our
discussion about mass-energy: since mass is energy, the Newtonian
expression “𝑚𝒗” indicates energy in motion, or a flux of energy. On a
sunny day, if you close your eyes and feel the Sun’s heat on your face,
what you are feeling is actually a flow of momentum. And when you kick
a ball, you’re setting a huge bundle of energy in motion, and that’s why
the ball has acquired momentum.

3.6 Angular momentum

Angular momentum, also called moment of momentum or rotational mo-
mentum, is a vector quantity. Its SI dimension and units can be written in
several equivalent ways; we shall keep in mind especially these three:

force × length × time

N · m · s
≡

mass × length2/time

kg · m2/s
≡

energy × time

J · s

It is usually expressed with three numbers, typically the 𝑥-, 𝑦-, and
𝑧-components.

Angular momentum is probably an even subtler quantity than mo-
mentum. Just as momentum is associated with translational motion,
angular momentum is associated with rotational motion. Rotational motion
is the kind of motion that leads to a new orientation in space, rather than to
a new position. For instance, if you turn to your left or to your right while
standing in place, you have performed rotational motion.

There isn’t a clear-cut distinction between translational and rotational
motion: usually they involve each other to some degree. A translational
motion can be interpreted as a rotation around a point that is very far
away; and a rotation of an extended object can be interpreted as small
translational motions of its parts.

This is the reason why in many situations we can calculate angular
momentum in terms of momentum. If the momentum in a small volume
is denoted by the vector 𝑷 = (𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧), and the position vector by
𝒓 = (𝑥, 𝑦, 𝑧), then the angular momentum 𝑳 = (𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧) with respect to
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the origin of coordinates, in that same volume, is given by the vector product

𝑳 = 𝒓 × 𝑷

or equivalently


𝐿𝑥 = 𝑦 𝑃𝑧 − 𝑧 𝑃𝑦

𝐿𝑦 = 𝑧 𝑃𝑥 − 𝑥 𝑃𝑧

𝐿𝑧 = 𝑥 𝑃𝑦 − 𝑦 𝑃𝑥

(3.2a)

Instead of calling the components “(𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧)”, we can also call them
“(𝐿𝑦𝑧 , 𝐿𝑧𝑥 , 𝐿𝑥𝑦)”, as some books do. The last names make the formulae
above easier to remember:

𝐿𝑦𝑧 = 𝑦 𝑃𝑧 − 𝑧 𝑃𝑦

𝐿𝑧𝑥 = 𝑧 𝑃𝑥 − 𝑥 𝑃𝑧

𝐿𝑥𝑦 = 𝑥 𝑃𝑦 − 𝑦 𝑃𝑥

(3.2b)

Choose whichever you prefer.

The amount of angular mo-
mentum within a volume at
a given instant is represented
by a 3D vector (curious about
the little circulation symbol
around the vector? then read
on). The magnitude and direc-
tion of this vector depend on
the coordinate system we’re
using.

Angular momentum is something that is associated not only with
ordinary bodies (matter), but also with electromagnetic fields. Just like
momentum, also angular momentum can be visualized as a “fluid of
vectors”. Given a particular volume at a particular instant in time, and
given a coordinate system, we can speak of the total amount of angular
momentum within that volume. This amount is represented by a vector,
and is coordinate-dependent:

- Amounts of angular momentum are coordinate-dependent

Don’t change coordinate system in the middle of calculations of angular
momentum!

The flux of angular momentum is also called the torque, and bears a
relation to the flux of momentum similar to the formula above. If the force
– flux of momentum – is denoted by the vector 𝑭 = (𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧) and the
position vector by 𝒓 = (𝑥, 𝑦, 𝑧), then the flux of angular momentum, or
torque, 𝝉 = (𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧) with respect to the origin of coordinates is given by

𝝉 = 𝒓 × 𝑭

or equivalently


𝜏𝑥 = 𝑦 𝐹𝑧 − 𝑧 𝐹𝑦

𝜏𝑦 = 𝑧 𝐹𝑥 − 𝑥 𝐹𝑧

𝜏𝑧 = 𝑥 𝐹𝑦 − 𝑦 𝐹𝑥

or


𝜏𝑦𝑧 = 𝑦 𝐹𝑧 − 𝑧 𝐹𝑦

𝜏𝑧𝑥 = 𝑧 𝐹𝑥 − 𝑥 𝐹𝑧

𝜏𝑥𝑦 = 𝑥 𝐹𝑦 − 𝑦 𝐹𝑥
(3.3)
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You may wonder: “Do we really need angular momentum? after all it
just looks like something constructed from momentum”. The answer is

Some liquid polymers (top:
Liquid Diethoxymethane
Polysulfide) need to be
described with a special
kind of angular momentum,
owing to their molecular
structure (bottom).

yes, we really need it, for two reasons. First, angular momentum obeys an
important universal law which is independent from those obeyed by energy
and by momentum (Truesdell 1968a tells some of the story of how this was
discovered). Second, for some physical phenomena, for example involving
liquid polymers31, elementary particles, or electromagnetic radiation, the
angular momentum includes an additional part, called spin or intrinsic
angular momentum, that is not related to linear momentum. In the present
notes we shall not use this more general kind of angular momentum.

] Angular momentum: notation

The amount of angular momentum in a region is usually denoted
with 𝑳. The torque or flux of angular momentum is denoted with 𝝉.

3.6.1 Angular momentum as a twisted vector

In order to represent angular momentum we can use a kind of vectors
different from the arrow-like ones (called polar vectors) with which you are
probably familiar. They are called twisted vectors, or also pseudo-vectors or
axial vectors or outer-oriented vectors. Twisted vectors represent rotations,
and therefore have an orientation, not along them, but around them:

an ordinary vector a twisted vector

Their length still represents the magnitude of the vector. They make it
immediately clear what is the axis of rotation, and what is the sense of
rotation.

The sum of twisted vectors is analogous to the sum of ordinary vectors,
with the parallelogram rule:
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+ =

Ordinary vectors and twisted vectors behave very differently if we look
at their images through a mirror parallel to their axis: the orientation of
ordinary vectors appears unchanged, whereas the orientation of twisted
vectors appears reversed:

this phenomenon reflects the behaviour of rotations under reflections.
For some mysterious reason many books are afraid of using twisted

vectors, and rely on ordinary vectors instead, introducing the “right-
hand rule” to determine the sense of rotation from the arrow of the
ordinary vector. If you’ve ever asked yourself “why the right hand, and
not the left hand?”, the answer is that it’s purely a convention; one could
have introduced a left-hand rule instead. Using twisted vectors we don’t
need these arbitrary conventions and mnemonics: the sense of rotation is
unequivocally indicated by the twisted vector.

Use whichever vector representation you prefer!
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« Exercise 3.3

A GPS satellite has, at a given instant, the following position and
momentum content:

𝒓 =
[
1.4 × 10+7 , 1.6 × 10+7 , 0

]
m

𝑷 =
[
−3.1 × 10+6 , 3.4 × 10+6 , 0

]
N · s

Assuming that the satellite’s volume can be considered small enough
for the present purpose, calculate the satellite’s angular momentum.

£ What are energy, momentum, angular momentum?

From the discussions and formulae above, it seems that energy-mass,
momentum, angular momentum are quite closely related to one another.
For all three, the amount in a volume or through a surface is undefined
unless we specify a coordinate system. And we shall see later that all
three satisfy balance laws but not necessarily conservation laws.

Relativity Theory indeed shows that energy, momentum, angular
momentum are different aspects of one single geometric object, called
energy-momentum tensor. They are like its “shadows”, that we can observe
by looking at it from different points of view in time and space. This is also
why their values get intermixed if we change our system of coordinates.

General Relativity gives a new meaning to these quantities: they are
particular curvatures of spacetime. They express how spacetime is curved
in different directions. So whenever we measure, say, the energy or the
momentum of some object or of some electromagnetic radiation, we
are actually measuring how much that object or radiation is curving
spacetime in a particular way.

Energy, momentum, angu-
lar momentum are measures
of particular curvatures of
spacetime.

3.7 Entropy

Entropy is a scalar quantity, with SI dimension energy/temperature, and
measured in units of joules/kelvins (J/K)32. From this definition it would
seem that entropy is derived from temperature. However, although tem-
perature is taken as primitive by the SI, the definition of temperature33

actually depends on a fixed value of Boltzmann’s constant34, which has the
dimension of entropy.
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Entropy is probably the most difficult quantity to grasp intuitively. Many
seemingly intuitive descriptions given in some textbooks are, unfortunately,
unhelpful and even misleading. One particularly misleading intuition

Microscopic configurations
of a lattice gas. Left: a con-
figuration coming from a low-
entropy state. Right: a config-
uration coming from a high-
entropy state (Styer 2000).

is that entropy would be a “measure of disorder”. Besides the fact that
“disorder” is very vague and subjective, it turns out that some physical
phenomena, for example with liquid crystals35, can be considered more
“disordered”, and yet have lower entropy, than others. See also the example
in the side figure. We shall discuss more about such phenomena later on.

In these notes we shall rely on the idea that entropy expresses a limit on
the flux of energy into matter. Said in simpler but more imprecise words,
entropy is a bound on how fast we can heat up a body. We shall develop
this idea further later.

One reason why entropy is difficult to grasp intuitively is that it has
very different physical and mathematical aspects depending on the spatial
scales and physical theory that we use to describe physical phenomena.

In many “continuum” phenomena, that is, phenomena where the
molecular constitution of matter is not visible or not taken into account,
entropy is treated as a “stuff-like” quantity similar to energy or electric
charge. But there are difficulties also in this case. For some phenomena,
for example involving non-elastic materials such as a simple paper clip, it
is possible to introduce several entropies having different values – and not
just because of a change in measuring scale – all of which can serve their
purpose perfectly fine.

In molecular phenomena involving statistical mechanics, on the other
hand, entropy is no longer a physical notion, but a probabilitistic and
statistical one, related to guesses and inferences that we make about the
physical phenomenon. Yet from many points of view it has roles similar to
those of the entropy used in continuum phenomena.

We shall see later that the physical laws for entropy have also a different
status with respect to the laws for the other six main quantities: they are,
so to speak, “laws about laws”.

] Entropy: notation

The amount of entropy in a region is usually denoted with 𝑆. We
shall see that the flux of entropy is tightly related to heat, and we
won’t need a special symbol for it.
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3.8 Metric

A very important quantity constitutes an eighth fundamental building
block of all our physical theories: the metric. It is quite different from the
seven fundamental quantities, from both a physical and a geometrical point
of view. For instance it is not an extensive quantity: we can’t ask “what’s
the total amount of metric in this region?” – it would be a meaningless
question.

The metric characterizes our measurements of space and time. It’s the
object that allows us to calculate how much physical time has elapsed,
or the physical distance of an object. In General Relativity it allows us to
calculate the curvature of spacetime.

In the Newtonian approximation, that is, for speeds smaller than the
speed of light and low energy densities (hence weak gravitational fields and
small spacetime curvature), the metric is just a static, uniform background
object, and spacetime has no curvature. This is why we can speak of an
‘absolute time’ and ‘absolute distances’ in this approximation. In these
notes we shall for the most part use this Newtonian approximation.

In General Relativity the metric is a dynamic object instead: it can
change in time, and can vary from region to region. These changes are
determined by the seven fundamental quantities, and the metric, in turn,
determines changes in the seven quantities.

3.9 Auxiliary quantities

Besides the seven principal quantities, other auxiliary quantities appear in
some physical theories. Important examples are temperature and strain.
Most auxiliary quantities are not extensive. For instance we cannot ask
“what’s the total amount of temperature in this region?”. We shall later
discuss and use some auxiliary quantities, especially temperature.

The dimensions, units, and scalar or vector character of all quantities
mentioned so far are summarized in table 3.1.
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Quantity SI Dimension Unit
Time time second s
Length length metre m
Temperature temperature kelvin K
Matter amount of substance mole mol
Electric charge electric charge coulomb C
Magnetic flux magnetic flux weber Wb
Energy energy,

mass
joule J,
kilogram kg

Momentum force · time,
mass · length/time,
energy · time/length

N · s,
kg · m/s,
J · s/m

Angular momentum force · length · time,
mass · length2/time,
energy · time

N · m · s,
kg · m2/s,
J · s

Entropy energy/temperature J/K

Table 3.1 Dimensions and units of the main physical quantities used in these notes.
Quantities in boldface are vectors, the others are scalars
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Chapter 4

Volume contents and fluxes

For the sake of persons of these different types, scientific
truth should be presented in different forms, and should
be regarded as equally scientific, whether it appears in the
robust form and the vivid colouring of a physical
illustration, or in the tenuity and paleness of a symbolical
expression.

J. Clerk Maxwell 1870

Recall that the main seven quantities – matter, electric charge, magnetic ¾ § 3 page 32
flux, energy, momentum, angular momentum, and entropy – have three
common properties related to their measurement:

(1) We can measure the amount of quantity within a three-dimensional
region, at a specific time instant

(2a) We can measure the amount of quantity flowing through a two-
dimensional surface during a time lapse. . .

(2b) . . . or alternatively we can measure the amount of quantity flowing
through a two-dimensional surface per unit time, at a particular time
instant

(3) The amount in a volume consisting of separate volumes is equal
to the total of the separate amounts. Similarly for the flux through
separate surfaces.

Let’s give definite names to the measurements (1) and (2b):
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] volume content and flux

We can call measurement (1) the volume content or volume integral
of the quantity.
We call measurement (2b) the flux of the quantity.

These two notions and measurements are very intuitive; that’s also
why it’s convenient to base our physics upon them. In this chapter we
straighten some details about their definition and also about our intuition.

4.1 Control volumes and control surfaces

For each of the main seven quantities we can therefore say how much
of that quantity is in a given volume, or how much is flowing through a
given surface. But how is this volume or surface chosen?

The choice of volume (and therefore of the surface bounding it) for a
volume content, and the choice of surface for a flux are completely arbitrary,
and they can be completely imaginary. Since they are under our control, and
they allow us to control how the amounts of the seven quantities change,
they are called control volumes and control surfaces.

For example, consider a classroom and the people in it. In your imagin-
ation you can divide the classroom into two halves, say the front and the
rear half. You can then ask or measure simply by counting: (1) how many
people are, right now, in the rear half; (2) how many people are crossing
the imaginary division between the front and rear half during one minute,
starting from now.

A control volume and a control surface don’t need to be static: they can
move and deform.

In the case of a control volume, movement doesn’t matter: the volume
content in a control volume does not depend on the instantaneous motion of the
volume. In fact we can even imagine a control volume that exists for just
one time instant.

The golf ball is moving left-
wards. Will it hit the metal
surface? We don’t know un-
less we know how the surface
is moving.

In the case of a control surface the situation is different. The flux
through it depends also on the motion of the surface. As a trivial example,
consider a glass surface, and a person on one side of it, moving with a
high velocity directed towards the surface. Will the person crash on the
glass? We can’t say for sure. The glass surface could be a glass wall in a
building, which is not moving; in this case the person will likely crash on
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it. Or it could be the windscreen of a car, which is moving together with
the person, who’s the driver; in this case the person won’t crash on it.

So we can’t just imagine a surface that exists for one time instant: we
need to imagine it for a very short time lapse, and be able to say how it’s
moving. If someone asks you what’s the flux through a control surface at
a given instant, but they don’t tell you what’s the motion of the surface,
then the flux is unknown.

] Control volume

A control volume is an arbitrary three-dimensional region of space
at a given (coordinate) time. This region can have any position, shape,
and size; it can even consist of several disconnected three-dimensional
regions. This region does not need to exist before or after the given
time.
We can also consider a temporal sequence of control volumes, one
for each instant of time. They can have positions, shapes, sizes that
change smoothly from one time instant to the next. This sequence is
often also called ‘control volume’ for short (but note the difference
from the original meaning, which refers to only one time instant).

] Control surface

A control surface is an arbitrary two-dimensional region of space at
a given (coordinate) time. This region can have any position, shape,
and size; it can even consist of several disconnected two-dimensional
regions.
The instantaneous movement and velocity of such a region is im-
portant; therefore this region must, intuitively speaking, exist also
an instant right before and right after the given time.
We can also consider a temporal sequence of control surfaces, one
for each instant of time. They can have positions, shapes, sizes that
change smoothly from one time instant to the next. This sequence is
often also called ‘control surface’ for short (but note the difference
from the original meaning, which refers to only one time instant).

The fact that we can choose control volumes and control surfaces
arbitrarily gives us a lot of power in solving physics problems and in making
predictions. Typically they are chosen so as to simplify the equations that
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describe the physical situation, simulate physical phenomena in a more
precise way, and focus on details of interest.

Clever choice of control
volume and surfaces allow us
to model and predict complex
motions of fluids; see also an-
imation1 (Wojtan et al. 2009)

When we study some solid object, like a football, a rocket, or a planet,
we typically choose a control volume that tightly encloses the object.
When we study something flowing or moving, like a fluid material or an
electromagnetic field, we typically divide the space of interest into small
control volumes and surfaces, constructing a mesh; this mesh can even be
refined in regions that are of special interest.

4.2 Volume content

4.2.1 Scalar quantities

A volume content (or volume integral) for a scalar quantity, for example
energy, can be represented like this:

we have eliminated one spatial dimension for simplicity, considering the
analogous two-dimensional idea. The volume is in light grey, delimited
by a closed darker grey boundary, and we’re indicating that the volume
content, that is, the amount of energy within, is 8 J.

As a visualization device, this representation can be useful. But let’s
straighten out some of its aspects:

• Recall that this is a snapshot at a given time instant. So there are 8 J
of energy in the volume at that instant, but we don’t know the situation
earlier or later: there could be a different amount of energy, the region
might be at a different position and have a different shape, or it might not
even exist.

• Recall that some scalar quantities, like electric charge and in some
situations matter (antimatter), can have negative amounts.

A region with a negative
amount of charge

• We must not surmise that the amount of quantity is uniformly dis-
tributed within the volume. In fact there could be negative amounts of
it in some subvolumes and positive in others. In particular, even if there

56

http://www.youtube.com/watch?v=M5xnAdVPbgQ
http://www.youtube.com/watch?v=M5xnAdVPbgQ


4. Volume contents and fluxes 4.2. Volume content

is a zero amount of quantity in a volume, some subvolumes could have
non-zero amounts: some positive and some negative, so that the total is
zero.

« Exercise 4.1

The volume content of matter in a particular volume is equal to 36 mol.
Can we conclude that the volume doesn’t contain antimatter?

4.2.2 Vector quantities

A volume content for a vector quantity, for example momentum, can
be represented as follows (we still simplify our visualization to two
dimensions):

Momentum is a vector quantity, so the total amount in the volume above
is a vector. The picture shows the direction and orientation of this vector,
and the magnitude of 8 N · s is explicitly reported.

- Vector magnitudes and opposite vectors

Remember that the magnitude of a vector is always positive, and that
↖ = −1 · ↘

The visual representation above is useful, if we keep in mind remarks
analogous to the scalar case:

• This is a time snapshot.

• The application point of the vector representing the volume content
is unimportant: for instance, it doesn’t need to be placed at the centre
of the volume. The vector refers to the volume as a whole, not to some
specific point within.

• Different subvolumes could have amounts represented by different
vectors; only the total vector is represented above.
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This last remark is especially important when we discuss momentum and
angular momentum. As an example, look at the side picture: the volume

The whole region has zero
volume content. The left and
right subregions have non-
zero and opposite volume
contents.

content for the whole region is zero, but its left and right subregions have
non-zero and opposite volume contents.

« Exercise 4.2

Recall extensivity, the third property of our seven main quantities:
the amount in a volume consisting of separate volumes is equal to
the total of the separate amounts.

We have a region consisting of two subregions; the amounts of
momentum in each subregion are shown below.

y

x

1. Write the total momentum in each subregion in component form,
(𝑃𝑥 , 𝑃𝑦), according to the coordinate system shown.

2. Calculate the momentum in the whole region; represent it graph-
ically as vector and write it in component form.

£ Adding vectors in General Relativity

We are used to the idea of adding vectors placed at different points in
space: we only have to first move each – keeping it parallel to itself – to a
common point, and then add them all at that point with the usual rule.

This operation cannot be done in General Relativity: the notion of
parallelism doesn’t apply anymore in a simple way, owing to the curvature
of spacetime. The addition would lead to different results depending on
how we transported the vectors. So in General Relativity we can only
sum vectors that are placed at the same spacetime point.

How can this operation be possible in Newtonian mechanics and in
practical applications, then? After all, General Relativity surely applies
here! The answer is that the discrepancies of vector transportation are
small enough in the neighbourhood of the Earth, as the curvature of
spacetime is very small here.
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4.3 Flux: scalar quantities

4.3.1 The direction, reckoning, and representation of scalar
fluxes

Earlier we took the intuitive example of a flow of people through an open
door; we might ask, for instance, how many people crossed the door in
a minute. But one more detail about this flow is important: in which
direction did the persons crossed the door? For example, if the door leads
to a classroom, we may need to know whether the people who crossed the
door got in or out, so as to know if there are seats left in the classroom.

In order to do this we can: 1. Assign a crossing direction to the door,
calling for instance ‘positive’ the direction from outside to inside the
classroom. 2. Count as ‘positive’ each person who crosses the door in the
positive direction, and count as ‘negative’ each person who crosses the
door in the opposite direction. The total tells us the net number of people
who entered the classroom. If the total is positive, then more people got in
than out; if the total is negative, then more people got out than in.

One important aspect of this example and terminology is the following
symmetry:

• What crossing direction is called ‘positive’ is fully arbitrary, just a
matter of agreement.

• If we decide to call ‘positive’ the other crossing direction, then the
total will change sign. But the physical situation is of course still the
same.

Therefore the sentences “+5 persons entered the room” and “−5 persons
exited the room” are saying exactly the same thing. This somewhat trivial
fact about fluxes will, later on, turn out to be connected with a famous law.
So let’s remember:

] Every flux is equivalent to a flux of opposite amount in the opposite direction

A flux in a particular surface-crossing direction is equivalent to a flux
of opposite sign in the opposite crossing direction.

“LEX III. Actioni contrariam
semper & æqualem esse
reactionem : sive corporum
duorum actiones in se mutuo
semper esse æquales & in partes
contrarias dirigi.”

Newton 1726a
Another important aspect of the example above is that if we’re told

“−5 persons exited the room”, we don’t know how exactly this happened:
it could be that 5 persons got into the room during that minute; or that
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10 persons got in and 5 got out; and so on. This is why we call ‘−5’ the net
amount.

Finally, consider a similar example but with a quantity that can ordin-
arily also be negative, such as electric charge. Call ‘positive’ the crossing
direction from outside to inside the room. If we’re told that a net charge
amount of −5 crossed the door in the positive direction in one minute,
then this could have happened in several ways:

• a charge of −5 was brought into the room
• a charge of +5 was brought out of the room
• a charge of −2 was brought into the room during the first 30 s, and a

charge of +3 was brought out in the remaining 30 s
• a charge of −2 was brought into the room during the whole minute,

and a charge of +3 was brought out at the same time
• . . . and many other possible combinations.

“Fechner [in 1845] supposed
every current to consist in a
streaming of electric charges, the
vitreous charges travelling in
one direction, and the resinous
charges, equal to them in mag-
nitude and number, travelling in
the opposite direction with equal
velocity.” Whittaker 1951

Indeed, ordinary electricity was thought for some time to be associated
with movements of negative and positive charges in opposite directions.

The purpose of the examples and scenarios above is just to make you
aware of some aspects of what we shall call “flux”, which are trivial but
important when considering fluxes of physical quantities.

How can we graphically represent the flux of a quantity, in such a way
as to take care of these aspects? Consider these three representations:

+5

–5

+5

–5

The grey straight line represents a surface (simplified to two dimensions)
through which we’re measuring a flux. In the first and second picture,
the wavy arrows represent arbitrary crossing directions called ‘positive’.
The blue arrow represents that we’re calling ‘positive’ the left-to-right
direction; the red arrow represents that we’re calling ‘positive’ the right-
to-left direction. The signed number represents the net amount according
to the positive direction – so the first and second picture represent the
same thing. One possible drawback of these two pictures is that they
may suggest that a given amount is actually moving from left to right
or vice versa; but we have seen that in general we don’t know this. The
third picture tries to avoid this misleading suggestion by not showing any
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arrows; it is meant to represent that on the left side the amount of quantity
has changed by −5, and on the right side by +5.

The third representation above has one more advantage. Remember
that a flux through a surface may occur because the surface itself is moving. ¾ § 4.1 page 54
The wavy arrows in the first two representations above may misleadingly
suggest that some amount of quantity is “moving” in their direction, or
that the surface itself is moving in that direction. The third, arrow-less
representation is less misleading.

In these notes we shall settle on the third representation above, but
feel free to use the one you prefer – as long as you are aware of all the
important aspects of a flux.

- What a flux does and doesn’t tell

A flux tells us the net change in the amounts of a quantity on the two
sides of a surface. These two amounts are equal in magnitude but have
opposite signs.

A flux does not tell us:
• whether the quantity “was in motion”
• . . . and if the quantity was in motion, what was its sign
• whether the surface was in motion

4.3.2 How does a scalar flux change, if we change the
surface?

We know that the flux through a surface consisting of two smaller surfaces is
the sum of the fluxes through the smaller surfaces. But what if we consider
a different surface, maybe intersecting the original one? It’s important
to keep in mind that a flux refers to a particular surface, and can be
very different if we consider a different surface, even if it’s close to the
original one.

Consider for instance the first picture on the side. We have two inter-
+5 J/s–5 J/s

–1 J/
s

+1 J/s

secting surfaces (as usual simplified by removing one dimension), both
almost horizontal. The energy flux through the solid blue surface, in a
roughly upward direction, is +5 J/s. The energy flux through the dashed
red surface, again in a roughly upward direction, is instead −1 J/s.

As another example, the second side picture shows two similar inter-

+
3
J/
s

-3
J/
s

+3 J/s

–3 J/s

secting surfaces, one fully vertical in solid blue, and one fully horizontal
in dashed red. The energy flux through the first in a rightward direction
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is +3 J/s, and so is the energy flux in an upward direction through the
second surface.

4.3.3 Flux units: scalar quantities

Remember that the flux of a quantity is defined as an amount of that
quantity per time lapse. Therefore the physical dimension of the flux is

quantity
time

and its units will be the units of the quantity divided by seconds:

] units of fluxes of the four scalar quantities

quantity matter electric charge energy entropy

flux units mol/s C/s J/s J/(K · s)
equivalent units ampere A watt W

After our discussion about the peculiarity of fluxes it’s quite easy to
work with the fluxes of the four main scalar quantities: matter, electric
charge, energy, entropy. Let us add some reminders and remarks about
the fluxes of matter and energy.

4.3.4 Matter flux

Remember that antimatter “counts as −1” for calculating amounts of
matter. If 1 mol of positrons (anti-electrons) crosses a surface from left to
right in 1 s, the left-to-right flux equals −1 mol/s – note the minus sign.
The fact that antimatter is given special names can lead to ambiguities. For
instance, if someone asks “what’s the left-to-right flux of positrons?”, maybe
we should answer “1 mol/s”, since the question concerned specifically
positrons. It’s somewhat like asking “what’s the flux of negative electric
charge?”. In these ambiguous situations is best to add some explanatory
words.

4.3.5 Energy flux

We already mentioned that energy flux can be categorized into different ¾ § 3.4.3 page 40
kinds, depending on whether there are fluxes of other quantities through
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the same surface. We study the exact definitions and formulae later on.
The total flux is given by the sum of all these kinds. For instance, through
a horizontal surface we can have a downward energy flux of 3 J/s as heat,
and a downward flux of −1 J/s as work. The total downward flux is then
2 J/s. The energy flux that you will calculate in the fourth exercise below
is called energy convection.

1 m

1 m/s

« Exercise 4.3

For each question, answer in an unambiguous way and sketch a
picture representing the flux.

1. The two sides of a particular surface are called ‘up’ and ‘down’.
During 0.2 s, an energy of +3 J flows from the up-side to the
down-side, and an energy of −4 J flows from the down-side to the
up-side. How much is the flux of energy through the surface?

2. Through the same surface, at a later time, 2 mol of neutrons flow
from the up- to the down- side in 0.01 s, and 2 mol of neutrons
flow from the down- to the up-side during the same time. How
much is the flux of matter through the surface?

3. The two sides of a surface are called ‘in’ and ‘out’. During 0.01 s
there is a flow of 1000 electrons from the in-side to the out-side, and
also a flow of 1000 positrons (anti-electrons) in the same direction.
How much is the flux of matter through the surface?

4. The side picture shows a surface moving from left to right at a
(constant) velocity of 1 m/s. The space to its right has two static
regions with some amount of energy as shown (there’s no energy
behind to the left of the surface). How much is the flux of energy
through the surface in 1 s?

4.4 Flux: vector quantities

4.4.1 Representation of vector fluxes

The flux of a vector quantity is also a vector, because it is given by an
amount of that quantity, which is a vector, divided by time, which is a
scalar.

The discussion about the arbitrary choice of a crossing direction and the ¾ § 4.3.1 page 59
minus signs that appear when we reverse it also applies, in an analogous
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way, to vector fluxes. Also the discussion about the minus sign remains
the same; we must only remember that a minus sign changes the sense or
orientation of a vector:

↖ = −1 · ↘

Take for instance a horizontal surface. Suppose that we call ‘positive’
the upward crossing direction, and that with this convection the flux is
represented by the vector

Then if we decide to call ‘positive’ the downward crossing direction instead,
the same flux is represented by the opposite vector

The situation in the case of vector fluxes can require a little more
thinking and attention, because it’s easy to get confused between the
crossing direction for the surface, and the direction suggested by the
vector flux – which are completely separate things. For this reason a good
graphical representation of a vector flux is this, analogous to the third ¾ § 4.3.1 page 60
representation for scalar fluxes:

The grey straight line represents a surface through which we’re measuring
the flux of a vector quantity; on the left side of the surface, the amount
of quantity has changed by and on the right side by . Obviously
these two changes have equal magnitude but are opposite.

Imagine the blue upper ar-
rows moving from left to
right, and the red lower ar-
rows moving from right to
left. Animated version here2.

As a mental image of a vector flux, you can imagine a moving collection
of identical arrows crossing the surface in one direction, together with a
moving collection of opposite arrows crossing the surface in the opposite
direction. See this link3 as an example.
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Since a vector is represented by three numbers (which can be positive
or negative), a vector flux can also be interpreted as the collection of three
distinct numerical fluxes:

(–21, +25, 0)

(+21, –25, 0)

the picture says that the 𝑥-component of the quantity has changed on
the right side of the surface by −21, and on the left side by +21; the
𝑦-component has changed on the right side by +25, and on the left side by
−25; and the 𝑧-component hasn’t changed on either side.

Another aspect of vector fluxes that we must try not to get confused
about is the application point of the vector representing the flux (the base
point of the arrow). This is a time snapshot. Just like in the case of vector ¾ § 4.2.2 page 57
volume contents, the application point of the vector representing the flux
is unimportant. The vector refers to one side of the surface as a whole.

« Exercise 4.4

A horizontal surface is given, and there is a flux of a vector quantity
through it (for the moment we neglect units):

1. If we take the downward crossing direction as ‘positive’, the flux
𝑥𝑦𝑧-components are (5, 5, 0). Represent this flux graphically, in
the way discussed in the present section. Use the coordinate
system

y

x
were 𝑦 points upward.

2. Taking the same crossing direction, represent graphically the
flux (0,−2, 0) instead.

3. Taking the same downward crossing direction, we are now told
that there is a flux with components (1,−2, 3). What are the
components of this flux if we take the upward crossing direction
as positive?
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4.4.2 Changes of vector flux upon changes of surface

We saw that the flux of a scalar quantity can be very different if we take a
slightly different surface. The same is true of the flux of a vector quantity:
in particular, the vectors representing the fluxes through two slightly
different surfaces can point in completely different directions.

Here is an example. Take a fixed point 𝑃. Now take a small vertical
surface passing through 𝑃. The flux of a vector quantity (momentum for
example) through this quantity can be as in this picture:

(9, –6, 0)

(–9, 6, 0)
P

(animated version4)

it has components (9,−6, 0), with magnitude around 10.8, if we take the
rightward crossing direction as positive.

Now forget about that surface, and take instead a small horizontal
surface passing through the same point 𝑃. The flux – of the same quantity
– through this surface can be as in this picture:

(–6, –3, 0)

(6, 3, 0)

P
(animated version5)

it has components (−6,−3, 0), with magnitude around 6.7, if we take the
upward crossing direction as positive.

Clearly the vectors representing the fluxes through these two surfaces
are different: they point in different directions, and have even different
magnitudes.

If we have a vector flux through a particular surface, and we’re asked
about the flux through a different surface, we might be tempted to “move”
through the new surface the vectors representing the flux through the old
one. We must fully resist this temptation. It only leads to mistakes.

- Each surface has a unique flux

A flux, scalar or vector, through a particular surface, in general doesn’t
tell you anything about the flux though another surface, even if the
other surface is only slightly different from the first one.

66

https://pglpm.github.io/7wonders/media/skewflux1.webp
https://pglpm.github.io/7wonders/media/skewflux2.webp


4. Volume contents and fluxes 4.5. Flux of momentum: force

4.4.3 Flux units: vector quantities

Also for vector quantities the physical dimension of the flux is

quantity
time

and its units will be the units of the quantity divided by seconds:

] units of fluxes of the three vector quantities

quantity momentum ang. momentum magnetic field

flux units N N m Wb/s

equivalent units volt V

4.5 Flux of momentum: force

We already mentioned that flux of momentum is what we call ‘force’. ¾ § 3.5 page 42
Owing to the importance of the notion of force in the many branches
of physics which rely on Newtonian mechanics, we must discuss this
connection in depth. This connection, as well as the connection to Newton’s
laws, will become even clearer when we discuss the balance of momentum
in Chapter 8.

4.5.1 Units

Recall that momentum can be measured in newton-seconds, ‘N · s’. Its ¾ § 3.5 page 42
flux, being a momentum per unit time, is therefore measured in newtons,
‘N’.

4.5.2 Visualizing force as flux of momentum

The notion of force is very intuitive. We associate it to the sensations that
we feel in our skin, flesh, and even bones when, for instance, we push
against a wall, twist a door knob, push backwards on the ground with our
feet to run, or other similar actions. This force is typically represented by a
vector, having the direction and orientation of the “push” or “pull”, and
magnitude expressing its intensity. Such a force vector is exactly the vector
expressing the flux of momentum. The two are the same. A force can therefore
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also be visualized as a flow of momentum. This mental representation can
be illuminating in some physical problems.

As a concrete example, imagine a person pushing against a wall. In
terms of force, we say that the person is exerting a force on the wall, and the
force vector on the wall has a person→wall orientation. This is usually depicted,
for example, like this:

In terms of momentum flux, we imagine a surface separating the person
and the wall. If we take a person→wall crossing direction, the flux vector
also has a person→wall orientation. Because of the symmetry of flux, if
we take a wall→person crossing direction instead, then the flux vector
also changes direction. This momentum flux can be depicted (zooming in)
like this:

The picture says: on the side of the wall, momentum is changing by an
amount having person→wall orientation; and, by symmetry of the flux,
on the side of the person’s head, momentum is changing by an amount
having opposite, wall→person orientation.

Let’s take an example involving pulling instead of pushing. Imagine a
person pulling a rope fastened somewhere. In terms of force we say that
the person is exerting a force on the rope, and the force vector on the rope has a
rope→person orientation. This can be depicted like this:
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In terms of momentum flux, we imagine a vertical surface between the
person’s hand and the rope. If we take a hand→rope crossing direction,
the flux vector has a rope→hand orientation – note the difference from
the previous example. Because of the symmetry of flux, if we take a
rope→hand crossing direction instead, then the flux vector has opposite
direction: hand→rope. This momentum flux can be depicted like this:

The picture says: on the side of the rope, momentum is changing by an
amount having rope→person orientation; and, by symmetry of the flux,
on the side of the hand, momentum is changing by an amount having
opposite, hand→rope orientation.

A final example illustrates a situation in between the previous two.
Consider the foot of a running person, as it pushes on the ground. In terms
of momentum flux, we imagine a horizontal surface between the runner’s
foot and the ground. If we take a downward crossing direction, the flux
vector is oriented towards the back of the foot. Because of the symmetry
of flux, if we take an upward crossing direction, then the flux vector has
opposite direction, towards the front of the foot, the same as the running
direction. This momentum flux can be depicted like this:

The picture says: on the side of the ground, momentum is changing by
an amount having leftward orientation; and, by symmetry of the flux, on
the side of foot, momentum is changing by an amount having rightward
orientation.

4.5.3 Netwon’s Third Law!
“LAW III. To every action there
is always opposed an equal
reaction: or, the mutual actions
of two bodies upon each other
are always equal, and directed to
contrary parts.”
(Original Latin on p. 59)

Newton 1726a

From the examples above, we see that thinking of force as momentum
flux automatically leads to Newton’s third law: if one side is gaining/losing
momentum with a given orientation, by symmetry the other side is
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gaining/losing momentum with the opposite orientation. So if one side
is experiencing a force with a given orientation, the other side must be
experiencing a force with the opposite orientation.

We see that Newton’s third law is the expression of the symmetry of
fluxes for the specific case of the flux of momentum (force). But we realize that
this property is more general: it applies not only to force, but also to the
flux of all other quantities, even scalar ones.

« Exercise 4.5

Using your intuition, try to guess the various momentum fluxes
(except their magnitudes) between this person and the walls:

(Buster Keaton in ‘The Electric House’6)

4.6 Pressure, tension, shear force

The examples of the previous section demonstrated a variety of possible
orientations of the momentum-flux vector with respect to the surface
through which it occurs. Obviously all orientations are possible. Special
names are given, however, to a momentum flux having three specific
orientations: pressure, tension, and shear force.

Take a surface and call its sides 𝐴 and 𝐵. Now consider a flux of
momentum according to the crossing direction 𝐴 → 𝐵.
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4.6.1 Pressure

If the momentum-flux from 𝐴 to 𝐵 is a vector also oriented from 𝐴 to 𝐵,
then we call the momentum flux a pressure, or compressive momentum flux
or compressive force. Here are two examples of pressure:

A B

A
B

(animated version7)

Pressure is the kind of momentum flux that we exert when we push on
an object, and that air exerts on all objects it surrounds.

4.6.2 Tension

If the momentum-flux from 𝐴 to 𝐵 is a vector oriented from 𝐵 to 𝐴, then
we call the momentum flux a tension, or tensile momentum flux or tensile
force. Here are two examples of tension:

A B

A
B

(animated version8)

Tension is the kind of momentum flux that we experience in our bones
when we pull an object, and that occurs in any section of a stretched rubber
band.

4.6.3 Shear force

If the momentum-flux from 𝐴 to 𝐵 is a vector oriented transversally, along
the surface itself, then we call the momentum flux a shear force, or shearing
momentum flux. Here are two examples of shear force:

A B

A
B

(animated version9)
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Shear force is the kind of momentum flux that we experience under
our feet when we walk or run, and that occurs between a car’s wheels and
the ground.

In general, a momentum flux won’t have any of the three special
directions above, but rather a combination of them.

« Exercise 4.6

Using your intuition, try to identify the various momentum fluxes
that occur in the different parts of a tower crane. Which of the fluxes
are (approximately) compressive, tensile, and shearing?

4.7 Closed control surfaces, influxes, effluxes

We shall often consider closed control surfaces, that is, control surfaces
that don’t have a rim or border or holes, like the surface of a sphere or
of a cube. A closed surface delimits a specific three-dimensional volume,
and we can naturally speak of its interior and its exterior. An example
(simplified by removing one dimension as usual) is the surface in the side
picture.

We can give two crossing directions to a closed surface: inward, from
exterior to interior; or outward, from interior to exterior. A flux through the
surface is usually called influx if we are considering the inward crossing
direction, and efflux or outflux if we are considering the outward crossing
direction. Obviously, by the symmetry of fluxes,

influx ≡ −efflux efflux ≡ −influx

The influx and efflux are fluxes through the whole surface. Consider for
instance these fluxes of energy and of momentum:

+5 J/s

–5 J/s

through
whole surface

8 N
through

whole surface

On the left we have an efflux of +5 J/s on the whole outer side of the
surface. We don’t know whether these 5 J/s are being evenly distributed
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all around the surface, or just at particular spots of it. On the right we have
an efflux of 8 N, with a vector pointing approximately rightward. Again
we don’t know what are the flux vectors of individual pieces of the surface:
the vector in the picture is just their total.

Let’s see another example of this fact. The picture below on the left
show the outward fluxes through three parts of a closed surface; the picture
on the right shows the total efflux through the same surface:

(0, 4, 0) N

(2, –1, 0) N

(–2, –1, 0) N

(0, 2, 0) N
through

whole surface

The individual fluxes and the total efflux are consistent, since

(2,−1, 0) N + (0, 4, 0) N + (−2,−1, 0) N = (0, 2, 0) N

« Exercise 4.7

1. Are the four partial fluxes shown on the left consistent with the
total efflux shown on the right? Why?:

through
whole
surface

2. Take an imaginary cylindrical surface enclosing one control rod10

in a nuclear-fission reactor11 (see side picture). Let’s say that in a
reactor there are 20 such rods. Approximately 5 × 1019 neutrons are
liberated in a second in the whole reactor by the fission fuel, but 2/3
of these are absorbed by the control rods.

How much, on average, is the efflux of neutrons (matter) through
the surface of one control rod?
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Express the result first in neutrons/s, and then in mol/s, using
the Avogadro constant

𝑁A = 6.022 140 76 × 1023 particles/mol .

Be careful about the signs!

4.8 Time-integrated fluxes

A flux is defined as the amount of a quantity crossing a surface in a short
time lapse Δ𝑡, divided by that time lapse. Denoting the flux by, say, 𝐽, this
definition also means that the amount of quantity crossing the surface in a
short time Δ𝑡 is equal to 𝐽 Δ𝑡.

Take now a surface that exists between two time instants 𝑡0 and 𝑡1;
during this time lapse it could also be moving and changing shape. Choose
a crossing direction through the surface. At each intermediate time instant
𝑡 we can then measure the flux of a quantity crossing the surface in that
direction, at that instant; denote it by 𝐽(𝑡).

The total amount of quantity that crosses the surface between times 𝑡0
and 𝑡1 can be found by integrating 𝐽(𝑡). That is, we divide the time interval
into very short time lapses of length Δ𝑡; for each short time lapse we know
that the amount that crosses the surface is 𝐽(𝑡)Δ𝑡. The total is obtained by
adding these small amounts. As Δ𝑡 is considered shorter and shorter, this
sum is by definition an integral:

] Time-integrated flux of a quantity through a surface between two times

The total amount of quantity crossing a surface (relative to a spe-
cified crossing direction) between times 𝑡0 and 𝑡1 is called the time-
integrated flux and is given by∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡 . (4.1)

The meaning of the integral above should be clear for any scalar
quantity, for which the flux is also a scalar. In the case of a vector quantity,
for instance momentum, the flux is also a vector, represented by three
components. The integral of a vector is obtained by calculating the integral
for each component, obtaining three results, which are the components of
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a new vector. Geometrically this corresponds to summing a large number
of very small vectors.

Take the case of momentum, whose flux (force) we denote 𝑭 =

(𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧). The integral of this flux is then∫ 𝑡1

𝑡0

𝑭(𝑡)d𝑡 :=

(∫ 𝑡1

𝑡0

𝐹𝑥(𝑡)d𝑡 ,
∫ 𝑡1

𝑡0

𝐹𝑦(𝑡)d𝑡 ,
∫ 𝑡1

𝑡0

𝐹𝑧(𝑡)d𝑡

)
. (4.2)

- The integrated flux can be zero even with non-zero flux

The result of the integral defining the integrated flux can be zero. This
means that no net amount of quantity crossed the surface between 𝑡0
and 𝑡1. Yet the flux 𝐽(𝑡) can be non-zero, even at all times; of course it
needs to be positive at some times, and negative at others.

As a simple example, consider a room’s door. During one minute, three
people enter through the door; during the next minute, three people (not
necessarily the same) exit through the door. The total flow of people is
zero, but the flux was non-zero during the first minute, and non-zero
during the second minute.

« Exercise 4.8

1. What is the physical dimension of the integrated flux of a quantity?

2. Suppose that we calculate the integral above for a particular surface
in the case of matter, finding a total of

∫ 𝑡1

𝑡0
𝐽(𝑡)d𝑡 = 7 mol. Now we

change our mind and choose the opposite crossing direction for
that surface. How does the result above change?

4.9 Fluxes and velocities

The idea of flux naturally evokes the idea of movement, and therefore of
velocity. Is there a relationship between flux and velocity?

The answer is yes: velocity is in fact essentially defined from a flux and
a volume content. Consider for example how we measure the velocity of
an object: we are actually keeping track of a flow of matter – the matter
that makes up the object – from a region of space to another.

75



4. Volume contents and fluxes 4.9. Fluxes and velocities

The rigorous definition of velocity from flux is involved, so here we’ll
just see a simplified and approximate example of how this definition works.
In the following chapters you will not need to remember any particular
mathematical definition; just keep in mind that there’s a tight connection
between velocity, flux, and volume content.

Take an extensive scalar quantity like matter, charge, energy, or entropy.
For concreteness let’s take matter. Choose a coordinate system (𝑡 , 𝑥, 𝑦, 𝑧)
and consider a point in space at a specific time. Around this point, choose

area A

vx

N

volume V

x

y

z vx Δt

Jx

a very small cuboid region, delimited by six small rectangular surfaces:
two parallel to the 𝑦𝑧-coordinate plane, two to the 𝑧𝑥 one, and two to the
𝑥𝑦 one (see side picture). The cuboid has volume 𝑉 , and the amount of
matter (volume content or integral) in it is 𝑁 . The two 𝑦𝑧 surfaces (one of
them is in dark red in the picture) have area 𝐴, approximately the same for
both; and there is a flux of matter 𝐽𝑥 crossing either of these two surfaces
in the positive-𝑥 direction. These two parallel surfaces have approximately
the same area and the same flux because the cuboid region is very small.

The 𝑥-component of the coordinate velocity of matter in this region is
then defined as

𝑣𝑥 := 𝐽𝑥/𝐴
𝑁/𝑉 (4.3)

with analogous definitions for the 𝑦- and 𝑧-components.
The velocity 𝒗 = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) so defined has the following intuitive

property. If you choose any very small surface centred at this point,
and move it with this velocity (and in the direction specified by the
velocity), then the matter flux through it is zero. This reflects the intuitive
understanding that if a surface is moving together with the matter, at the
same speed, then we shouldn’t observe any flux through it.

« Exercise 4.9

Try to prove the formula (4.3) relating flux and velocity in an intuitive
way, referring to the picture above.

As a starting point, consider this question: if the amount of
matter 𝑁 in the volume 𝑉 is moving with velocity 𝑣𝑥 in the positive-
𝑥 direction, how much of it will cross the area 𝐴 during time Δ𝑡?
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£ Velocities of objects in general relativity

One consequence of the relationship between velocities and fluxes is that
we can define such a velocity for any extensive quantity. So we have a
velocity matter from the flux of matter, but also a “velocity of energy”
from the flux of energy.

In Newtonian approximation these two velocities are equal, so we
do not need to distinguish them. In situations where the Newtonian
approximation is not valid, on the other hand, we have to take into
account the “velocity of matter” and the “velocity of energy” separately.
This difference is important for instance in the study of plasma in stars
and in numerical general relativity. There is an ongoing discussion as to
which of the two velocities is more convenient to use; see for instance
Kandus & Tsagas 2008, especially the section Eckart frame versus Landau
frame, which refers to the choice between these two velocities.

4.10 Symbols for volume contents and fluxes

Let us summarize the symbols for volume contents and fluxes of the seven
quantities, together with their units, that are used in these notes:

] Symbols and units of volume contents and fluxes

quantity vol. integral [unit] flux [unit]

matter 𝑁 [mol] 𝐽 [mol/s]

energy 𝐸 [J] 𝛷 [J/s or W]

momentum 𝑷 [N s] 𝑭 [N]

angular momentum 𝑳 [N m s] 𝝉 [N m]

entropy 𝑆 [J/K] 𝛱 [J/(K s)]
electric charge (not used) [C] (not used) [C/s or A]

magnetic field (not used) [Wb] (not used) [Wb/s or V]
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URLs for chapter 4

1. http://www.youtube.com/watch?v=M5xnAdVPbgQ
2. https://pglpm.github.io/7wonders/media/vectorfluxanimsin.webp
3. https://pglpm.github.io/7wonders/media/vectorfluxanimsin.webp
4. https://pglpm.github.io/7wonders/media/skewflux1.webp
5. https://pglpm.github.io/7wonders/media/skewflux2.webp
6. https://www.imdb.com/title/tt0013099/
7. https://pglpm.github.io/7wonders/media/pressure.webp
8. https://pglpm.github.io/7wonders/media/tension.webp
9. https://pglpm.github.io/7wonders/media/shearforce.webp
10. https://energyeducation.ca/encyclopedia/Control_rod
11. https://www.britannica.com/technology/nuclear-reactor
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Chapter 5

Physical laws

Every branch of physical science is based on two sets of
fundamental equations. The first set is that of basic laws of
physics, which are postulated to hold valid for all bodies
under all conceivable circumstances [. . .]. The second set
of fundamental equations are the constitutive equations:
these are relationships which are not supposed to hold for
all bodies, but only to describe the behavior of some
restricted class of bodies, or possibly of a larger class of
bodies for a more restricted class of phenomena.

G. Astarita 1990

5.1 Fundamental vs derived laws

Physical laws, very generally speaking, are mathematical relations between
physical quantities. They express that the values of some physical quantities
must have particular relationships with the values of others, at least in some
circumstances. These values may also refer to different places and different
times. We use many physical laws every day without even thinking about
them. For example, if in the morning we pack a backpack that ends up
weighing 10 kg, and we don’t open it for the whole day and doesn’t have
any holes or leaks, then in the evening we expect the backpack to still
weigh 10 kg. We really have a physical law here: the weigh at an earlier
time must be equal to the weigh at a later time, unless the backpack had holes or
leaks. The ‘weigh at an earlier time’ and the ‘weigh at a later time’ are two
physical quantities; ‘must be equal’ is a mathematical relationship; and
‘unless holes or leaks’ are the circumstances in which this law applies.
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Physical laws can be classified or categorized in many different ways;
for instance by the quantities they involve or by the mathematical formulae
they contain.

One classification distinguishes between fundamental vs derived physical
laws. This distinction is similar to the one between primitive and derived ¾ § 1.2 page 12
quantities. A law is ‘fundamental’ if it is taken as empirically valid,
and as the starting point to make predictions or calculate other kinds
of consequences. A law is ‘derived’ if it can be deduced from other
fundamental laws; in a manner of speaking, it doesn’t really say anything
new that wasn’t already a consequence of the fundamental laws. But it
may still be very useful. Here is an informal example. Suppose that in
particular driving conditions an electric car consumes 6.5 J every metre;
we express this with a mathematical formula relating consumed energy
and travelled distance:

energy = 6.5 J/m · distance

In the same driving conditions, the car travels 108 km every hour; we
express this with another mathematical formula relating travelled distance
and travel time:

distance = 3 m/s · time .

We consider these two formulae as “fundamental” because each one
give us new information and allow us to make prediction. If we travel
1 km, the first formula tells us we’ll consume 650 J; but it doesn’t tells
us how long our trip will last. The second formula tells us this: around
1000 m/(3 m/s) ≈ 333 s or 5.5 minutes. We may wonder, however, how
much is the energy consumption per travel time. This is given by a new
formula obtained by combining the two above:

energy = 19.5 J/s · time

This formula is ‘derived’ because we obtained it by combining the previous
two. It doesn’t tell us anything new that we couldn’t find by using the
previous two. Yet it is very useful, because it gives us some particular
information in a faster way.

The distinction between fundamental and derived physical laws is not
objective, but mostly a matter of personal choice and convenience. We can
often promote a derived law to fundamental, demoting a fundamental to
a derived status.
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« Exercise 5.1

1. Take the energy-distance and energy-time relations from the
previous electric-car example as fundamental. Show how the
distance-time relation can be derived from them.

2. Now take the distance-time and energy-time relations as funda-
mental. Show how the energy-distance relation can be derived
from them.

It is important to be aware of this, because you’ll find texts that present a
physical theory as consisting in a collection of fundamental laws, and other
texts that present the same physical theory as consisting in a collection
of slightly different fundamental laws. There is no contradiction there: it
means that some derived laws in one text will be fundamental in another,
and vice versa. So to speak, one text may describe the characteristic
of the electric car starting from the energy-distance and distance-time
relations, while another text starts from the energy-distance and energy-
time relations, and another text might start from the distance-time and
energy-time relations.

Yet the choice of which laws to take as fundamental is not without
consequence. The choice of a particular set of fundamental laws rather
than another may suggest new physical ideas and generalizations, leading
to the discovery of new physical phenomena.

5.2 Universal vs constitutive laws

A much more important distinction can be made between universal physical
laws and constitutive physical laws. This distinction is more important
because it is determined not by personal choice and convenience, but by
experiment:

] Universal vs constitutive physical laws

• Universal laws represent universal physical patterns that we observe
in all possible physical phenomena, or at least in a very wide range
of physical phenomena.

• Constitutive relations are physical laws and physical properties
that only apply to particular phenomena, or only on particular
scales of time and space, or only in particular approximate physical
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theories. Constitutive relations express the diversity of physical
phenomena that we observe around us, as well as different kinds
of approximations that we use in describing physical phenomena.
Other names used for this kind of laws are constitutive equations and
closure equations.

This distinction is very different from the one previously discussed
between ‘fundamental’ and ‘derived’, from several points of view. First
of all, the difference is not a matter of personal choice and convenience:
for example, we experimentally see that some physical relation gives
correct results when applied to phenomenon ‘𝐴’ but wrong results when
applied to phenomenon ‘𝐵’; that relation cannot therefore be a universal
law. Second, whereas a derived laws are optional – a sort of convenient
calculation shortcuts, which we can avoid using if we want – we instead
cannot avoid using constitutive relations. Some constitutive relations
are always needed, together with universal laws, for the description or
prediction of a physical phenomenon.

But are there really universal physical laws, which can be applied to
every physical phenomenon, without exclusions or exceptions?

The answer is yes. We shall meet them in Chapter 6. Our discussion of
physics will indeed completely hinge on them. These universal laws can
be applied with some confidence to every new phenomenon we observe,
and often allow us to make predictions of at least a qualitative character.
We would modify universal laws only as a last resort; so far this has rarely
or never been necessary. On the other hand we have a large freedom in
modifying constitutive relations, and in proposing new ones to account
for newly observed physical phenomena.

- ‘Fundamental’ vs ‘universal’ in other texts

Be aware that the terms ‘fundamental’ and ‘universal’ are typically not
used in a technically precise sense. Some texts may use ‘fundamental’
in the sense of ‘universal’ as done here. What is important for you to
remember is that there are physical laws that are used in all situations,
and physical laws that can be used only in a restricted range of situations.
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5.3 Balance and conservation laws

If we examine the mathematical form and physical meaning of physical
laws, it is also possible to distinguish a particular kind of laws, called
balance and conservation laws. This kind of laws has a special connection
with extensive quantities, like the 3.1seven main quantities in terms of
which we describe physical phenomena.

] Balance and conservation laws

Balance laws, or simply balances, have this name because they express
a sort of trade-off or “budget” about extensive physical quantities.
Conservation laws are a special and important kind of balance laws.

https://xkcd.com/2904

Recall that for extensive quantities we may ask how much of a quantity
is there in a particular control volume, or how much is flowing through
a particular control surface. Balance and conservation laws express a
trade-off between such amounts; for instance they may say how much
the amount in a given volume must be, if there is a particular amount in
another volume and a particular amount flowing through some surface.
Let us study them in detail, starting with conservation laws.

- ‘Conservation’ vs ‘balance’ in other texts

Be aware that many texts do not distinguish between ‘conservation law’
and ‘balance law’, and often use ‘conservation’ to mean both; which is
unfortunate, since balance is the most general of the two. Always try to
infer from the context how these two terms are used.

In this chapter we shall see how to mathematically express balance and
conservation laws, as well as some kinds of constitutive relations.

5.4 Conservation laws

Conservation laws tightly connect volume contents and fluxes. They are ¾ § 4 page 53
intuitively and visually easy to grasp. The archetype is as follows:

Consider a closed control surface at a (coordinate) time 𝑡0, which delimits ¾ § 4.7 page 72
a control volume. A spherical surface, delimiting a ball-shaped region, is an
example. Actually the closed control surface doesn’t need to be connected:
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it could consist of several separate closed control surfaces, each delimiting
a different volume.

Starting from time 𝑡0, imagine the closed control surface moving and
deforming through time, changing shape and size but remaining closed –

Four snapshots of a moving
and deforming closed control
surface (click here for anim-
ated version1)

no holes or cuts – until a later time 𝑡1. At this final time we have a final
closed control surface that can be different from the initial one, and at a
different position. If we wanted, we could start with a spherical surface
delimiting a region the size of a tennis ball, and end with a cubical surface
delimiting a region the size of the Sun. The temporal sequence of closed
control surfaces delimits a sequence of control volumes; see the sequence
on the side picture below as an example.

Now consider any one of the seven primitive quantities, except magnetic ¾ § 3.1 page 32
flux. Recall that these quantities are extensive: we can measure the amount
of this quantity in any control volume, and its flux across any control
surface. For concreteness let’s take matter, for which we denote volume
contents by 𝑁 and flux by 𝐽. We make the following measurements:

• 𝑁(𝑡0): total amount of matter contained within the control volume at
time 𝑡0.

• 𝐽(𝑡): influx (flux crossing inwards) of matter (and antimatter!) through ¾ § 4.7 page 72
the closed surface at any particular time 𝑡 between 𝑡0 and 𝑡1.

• 𝑁(𝑡1): total amount of matter contained within the control volume at
time 𝑡1.

Each of the three amounts above is, in this example, a scalar that can
be positive, negative, or zero. For instance we could have:

𝑡0 = 00:00:00 𝑡1 = 00:00:18
𝑁(𝑡0) = 3.50 mol 𝐽(𝑡) = −0.06 𝑡 mol/s2 𝑁(𝑡1) = −6.22 mol

note that 𝐽(𝑡) is given as a function of the time 𝑡.
With this setup we can introduce two kinds of balance laws.

] Conservation law in integral form

An extensive quantity with volume content 𝑁(𝑡) and influx 𝐽(𝑡) is
said to satisfy a conservation law, or to be conserved, if the following
equality holds always:

𝑁(𝑡1) = 𝑁(𝑡0) +
∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡 (5.1)
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The meaning of the equation above is intuitive: the amount of quantity in
the final control volume, 𝑁(𝑡1), must be equal to the amount in the initial
control volume, 𝑁(𝑡0), plus the total amount (which could be negative) that
flowed in through the surface between those times, that is, the integrated
flux

∫ 𝑡1

𝑡0
𝐽(𝑡)d𝑡. Said otherwise, any amount of quantity that appears in (or

disappears from) the control volume, must come in (or go out) through
the surface; it can’t appear or disappear out of nowhere.

A conservation law allows us to make several kinds of predictions or
deductions. For example:

• If we know the amount of quantity within the control surface at 𝑡0
and the net amount that crossed the surface between 𝑡0 and 𝑡1, then
we can predict the amount within the control surface at 𝑡1: this is
given by the equation above.

• If we know the amount of quantity within the control surface at 𝑡0
and the one at 𝑡1, then we can deduce the net amount that crossed
the surface between the times 𝑡0 and 𝑡1:∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡 = 𝑁(𝑡1) − 𝑁(𝑡0) .

• If we know the amount of quantity within the surface at 𝑡1 and the
net amount that crossed the surface between 𝑡0 and 𝑡1, we can deduce
the amount initially within the surface, at 𝑡0:

𝑁(𝑡0) = 𝑁(𝑡1) −
∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡 .

These kinds of predictions and deductions are very powerful because
we are fully free to decide the shape and motion of the control surface and
volume, as well as the times 𝑡0 and 𝑡1.

We unconsciously use several conservation laws all the time in our
everyday life. If a bike tyre is suddenly deflated, we conclude that that air
must have got out of it through it surface, which must therefore have a
hole or a defective valve; we don’t conclude that air “just disappeared”.

Note that the discussion so far is equally valid for a scalar or a vector
quantity (we shall consider vector quantities more in detail in a moment).
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5.4.1 Differential form of conservation laws

The conservation law

𝑁(𝑡1) = 𝑁(𝑡0) +
∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡

is said to be written in integral form, because it contains the integrated flux,
necessary to calculate the net amount of quantity that crosses the control
surface.

Change the symbol for time 𝑡0 simply into 𝑡, and take 𝑡1 to come after a
very short lapse of time Δ𝑡 after 𝑡:

𝑡0 becomes 𝑡 , 𝑡1 becomes 𝑡 + Δ𝑡

Then the integrated flux can be approximated by
∫ 𝑡+Δ𝑡
𝑡

𝐽(𝑡)d𝑡 ≈ 𝐽(𝑡)Δ𝑡
(because the flux 𝐽(𝑡) is approximately constant in the short time lapse Δ𝑡).

-

Some mathematical con-
ditions must be satisfied
to make these steps; other-
wise the derivative below
must be carefully defined
in a generalized sense.

The conservation law can then be approximated as

𝑁(𝑡 + Δ𝑡) ≈ 𝑁(𝑡) + 𝐽(𝑡)Δ𝑡

Now bring the term 𝑁(𝑡) to the left side, and divide the whole expression
by Δ𝑡:

𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡)
Δ𝑡

≈ 𝐽(𝑡)Δ𝑡

Consider smaller and smaller Δ𝑡: then the fraction 𝑁(𝑡+Δ𝑡)−𝑁(𝑡)
Δ𝑡 becomes,

by definition, a derivative, and we obtain a new form for the conservation
law:

] Conservation law in differential form

A quantity is said to satisfy a conservation law if the following
equality holds always:

d𝑁(𝑡)
d𝑡 = 𝐽(𝑡) (5.2)

This form says that the rate of change of the volume content of a quantity
must equal influx of that quantity, that is, the rate at which the quantity is
coming in through the control surface.

Both forms, integral and differential, of a conservation law are useful,
in different situations. The integral form is obviously useful if we know the
total flow during a time lapse but we don’t know the flux at each instant.
The differential form is often useful for simulating physical processes and
make predictions.
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5.4.2 Example with a moving control surface

The tube within the tyre of a bicycle has, at a given time, 12.6 mol of air.
The bicycle and its tyres moves around, and thirty minutes later the tyre is
flat, the inner tube having only 0.5 mol of air.

We consider an imaginary, closed control surface wrapping the tube.
The control surface deforms just like the tube deforms. The initial control
surface has therefore a tubular shape, but the final control surface doesn’t.

We assume that air satisfies a conservation law. From the description
above we have

𝑡0 = 0 s , 𝑡1 = 1800 s , 𝑁(𝑡0) = 12.6 mol , 𝑁(𝑡1) = 0.5 mol .

The conservation law (5.1) allows us to calculate the integrated influx:∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡 = 𝑁(𝑡1) − 𝑁(𝑡0)

= 0.5 mol − 12.6 mol
= −12.1 mol

There’s a physical hole in the
physical tube, but no holes in
the imaginary control surface
that wraps the tube

The negative-signed result says that 12.1 mol of air have crossed the
moving control surface, in an outward direction, during thirty minutes.
Obviously this happened because the tyre tube must have a hole. Note that
this is a physical hole in the physical tube; our control surface is imaginary
and doesn’t have any holes. It’s just a sort of “border checkpoint” where
anything can in principle move through; we only keep count of what’s
crossing, how much, and how fast.

We see that the fact that air satisfies a conservation law allows us to
determine the integrated flux through the control surface. But it doesn’t
allow us to determine the flux 𝐽(𝑡) at every individual time between 𝑡0 and
𝑡1. For example, we don’t know if there was a larger flux at the beginning
than at the end; the tyre may have gone completely flat just after 60 s; in
that case the flux 𝐽(𝑡) was zero for 𝑡 > 60 s.

5.4.3 Example with a static control surface

In the previous example we chose a closed control surface that moved
and deformed with some object of interest (the tyre tube). But we can also
choose a different control surface, for instance a static one.

Consider a block of 53.4 mol of ice having cylindrical shape with 1 m
diameter and 1.226 m height. It is falling downward owing to gravity
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(and in a vacuum). At a particular time it occupies a particular position;
after 0.5 s it is situated, for an instant, immediately underneath the initial
position, as illustrated in the side picture.

t1 t2
z

x

initial
situation

final
situation

Suppose we want to know the net quantity of ice that passed, in a
downward direction, across the circular surface separating the initial and
final positions. We can calculate this quantity by assuming that ice (as
matter) satisfies a conservation law.

We choose a static closed control surface of cylindrical shape. This

t1 t2
z

x

initial
situation

final
situation

control surface is located in such a way that it wraps the block of ice at the
final time; at the initial time, therefore, the control surface is empty. See
the side picture, where the control surface is represented by the dashed
yellow line. This static control surface consists of three parts: a circular
surface at the bottom, a side surface, and a circular surface at the top –
which is the one that interests us.

According to the description above we have

𝑡0 = 0 s , 𝑡1 = 0.5 s , 𝑁(𝑡0) = 0 mol , 𝑁(𝑡1) = 53.4 mol .

From the conservation law (5.1) we calculate the integrated influx:∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡 = 𝑁(𝑡1) − 𝑁(𝑡0)

= 53.4 mol − 0 mol
= 53.4 mol

Note that this is the integrated influx through the whole cylindrical surface.
The conservation law doesn’t tell us anything about the integrated influx
through parts of the surface. In the present case we provide the extra
knowledge that the fluxes through the side and bottom surfaces are zero,
between 𝑡0 and 𝑡0. Then, by the extensivity property, ¾ § 3.1 page 33∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡 =
∫ 𝑡1

𝑡0

[
𝐽top(𝑡) + 𝐽side(𝑡) + 𝐽bot(𝑡)

]
d𝑡

53.4 mol =
∫ 𝑡1

𝑡0

[
𝐽top(𝑡) + 0 mol/s + 0 mol/s

]
d𝑡

from which we find, as was intuitively clear, that the net amount of ice
that crossed the top surface in a downward direction is 53.4 mol.
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« Exercise 5.2

Solve the following exercises not just by using intuition, but by explaining
step-by-step how you use a conservation law, in integral or differential
form, to obtain the result:

• what is the relevant time interval (if using the integral form)
• how you define the closed control surfaces and their movement, as

well as any subdivisions of the surfaces
• what are the volume content and integrated-flux values you know,

and which you want to find

1. For the present exercise we assume that energy satisfies a conser-
vation law.

An apartment’s room has two identical electric heaters along a
wall. An electric heater can be considered as a piece of surface
across which energy flows into the room: the energy is entering
(in proximity of the electric wires) in the form of electromagnetic
energy, and is converted into internal energy (mainly of the room’s
air) by means of the heater. Suppose that each heater corresponds
to an influx of 200 J/s.

The room also has a window, which is the only other part of the
room’s boundary where energy can flow in or out.

In one hour we measure that the total amount of energy in the
room has not changed. How much is the integrated energy influx
through the window during that time?

2. For the present exercise we assume that argon2 atoms satisfy a
conservation law.

A distillation column3 in a chemical plant has a constant influx
of 2 mol/s of argon atoms at one inlet, and a constant outflux of
argon atoms, possibly at a different rate, at an outlet. An amount
of 500 mol of argon is measured in the chamber at a given time,
and one minute later the amount is measured to be 620 mol. How
much is the argon outflux (not the integrated outflux) at the outlet?
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5.5 Balance laws

Our intuitive understanding of a conserved quantity is that it cannot be
“created” or “destroyed”. This leads to the definition of a more general
law where this condition is not necessarily satisfied.

The setup is just like before: consider an initial and final closed control
surfaces and volumes at 𝑡0, 𝑡1, and a sequence of closed control surfaces
in between. This time let’s take energy-mass as a concrete example, with
initial volume content 𝐸(𝑡0), final volume content 𝐸(𝑡1), and influx 𝛷(𝑡).

] Balance law

A quantity with volume content 𝐸(𝑡) and influx 𝛷(𝑡) is said to satisfy
a balance law, or to be balanced, if the following equality holds
always:

𝐸(𝑡1) = 𝐸(𝑡0) +
∫ 𝑡1

𝑡0

𝛷(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑅(𝑡)d𝑡 (5.3)

where 𝑅(𝑡), called the supply or source, is the amount of quantity
created per unit time within the closed control surface at time 𝑡.

If the quantity is a scalar, then 𝑅(𝑡) can also be negative, in which case we

A conservation law only in-
volves what happens within
the initial and final control
volume (represented by the
red hatched disks), and on
the sequence of control sur-
faces in between (represen-
ted by the curved red con-
tours), but not what happens
within the control volumes
in between. A balance law
instead also involves what
happens within the control
volumes in between.

may call it a sink and we say that some of the quantity is being destroyed
at time 𝑡.

The meaning of the equation above is intuitive: the amount of quantity
in the final control volume, 𝐸(𝑡1), must be equal to the amount in the initial
control volume, 𝐸(𝑡0), plus the total amount that flowed in through the
surface between those times,

∫ 𝑡1

𝑡0
𝛷(𝑡)d𝑡, plus the total amount that was

created in the volume,
∫ 𝑡1

𝑡0
𝑅(𝑡)d𝑡.

According to the definition above, a conservation law is a special, powerful
case of a balance law: one for which 𝑅(𝑡) = 0 always and everywhere. That is,
there never are sources or sinks of the quantity: the quantity cannot be
created or destroyed: it can only “move around”.

A conservation law is powerful because the supply 𝑅(𝑡) is already
known and has an extremely simple value (zero). It is also powerful
because it allows us to predict the amount of quantity in the final volume
by making measurements only on the surface during the time lapse. A
general balance law, instead, requires us to also make measurements at
every point within the volume during the time lapse: we must do this to
check whether some quantity was created or destroyed within the volume.
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For these reasons a balance law is in some respects more trivial than a
conservation law. If we measure that 𝐸(𝑡0) − 𝐸(𝑡1) −

∫ 𝑡1

𝑡0
𝛷(𝑡)d𝑡 is not zero

(so there’s no conservation law), we can always say that some amount of
quantity must have been created or destroyed within the control volume
between 𝑡0 and 𝑡1. An extensive quantity can therefore always be said to
satisfy a balance. A balance is not trivial, however, if we have some specific
physical law that tells us in advance how the amount created or destroyed
at each instant, 𝑅(𝑡), can be calculated.

A conservation law is therefore powerful also because it allows us to
predict the amount of quantity in the final volume by making measure-
ments only on the surface during the time lapse. A general balance law,
instead, requires us to also make measurements at every point within the
volume during the time lapse.

- Supplies are very different from fluxes

One could object: “why don’t you just put the flux 𝛷(𝑡) and the supply
𝑅(𝑡) together, adding the two integrals in equation (5.3)? Wouldn’t you
get

𝐸(𝑡1) = 𝐸(𝑡0) +
∫ 𝑡1

𝑡0

[
𝛷(𝑡) + 𝑅(𝑡)

]
d𝑡 = 0

which looks like a conservation law?”
Unfortunately the mathematical expression above wouldn’t be a

conservation law, despite its appearance. The point is this: the flux 𝛷
involves only what’s happening on the control surface; the supply 𝑅, on
the other hand, involves what’s happening within the control volumes,
at each time. A conservation law instead does not require us to know
what’s happening within the control volumes, except at the initial and
final time.

5.5.1 Balance law for vector quantities

Let us now consider an extensive vector quantity like momentum. Denote
its initial and final volume contents by 𝑷(𝑡0) and 𝑷(𝑡1), and its influx (the
force) by 𝑭(𝑡). These are all time-dependent vectors:

𝑷(𝑡) =

𝑃𝑥(𝑡)
𝑃𝑦(𝑡)
𝑃𝑧(𝑡)

 𝑭(𝑡) =

𝐹𝑥(𝑡)
𝐹𝑦(𝑡)
𝐹𝑧(𝑡)

 .
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The balance law has an analogous form:

𝑷(𝑡1) = 𝑷(𝑡0) +
∫ 𝑡1

𝑡0

𝑭(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑮(𝑡)d𝑡 (5.4)

where the supply

𝑮(𝑡) =

𝐺𝑥(𝑡)
𝐺𝑦(𝑡)
𝐺𝑧(𝑡)


is the amount of momentum created per unit time within the control
volume at time 𝑡. This balance corresponds to three equations, one per
component: 

𝑃𝑥(𝑡1) = 𝑃𝑥(𝑡0) +
∫ 𝑡1

𝑡0

𝐹𝑥(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝐺𝑥(𝑡)d𝑡

𝑃𝑦(𝑡1) = 𝑃𝑦(𝑡0) +
∫ 𝑡1

𝑡0

𝐹𝑦(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝐺𝑦(𝑡)d𝑡

𝑃𝑧(𝑡1) = 𝑃𝑧(𝑡0) +
∫ 𝑡1

𝑡0

𝐹𝑧(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝐺𝑧(𝑡)d𝑡

(5.5)

5.5.2 Differential form of balance laws

By considering a very short time lapse Δ𝑡, with reasoning analogous to the
case of a conservation law (5.2), we can write a balance law in a different
form:

] Balance law in differential form

A quantity is said to satisfy a balance law if the following equality
holds always:

d𝐸(𝑡)
d𝑡 = 𝛷(𝑡) + 𝑅(𝑡) (5.6)

For a vector quantity such as momentum, the differential form again
corresponds to three equations, one per component:

d𝑃𝑥(𝑡)
d𝑡 = 𝐹𝑥(𝑡) + 𝐺𝑥(𝑡)

d𝑃𝑦(𝑡)
d𝑡 = 𝐹𝑦(𝑡) + 𝐺𝑦(𝑡)

d𝑃𝑧(𝑡)
d𝑡 = 𝐹𝑧(𝑡) + 𝐺𝑧(𝑡)

(5.7)
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5.5.3 Example with a moving control surface

Take a coordinate system (𝑥, 𝑦, 𝑧) where 𝑦 has a horizontal direction
and 𝑧 an upward direction. At a particular time instant a tennis ball has
momentum [0, 1.70, 0.98] N s. It flies for two seconds. During this time
there’s a continuous and constant supply of momentum within the ball,
equal to [0, 0,−0.579] N. No net momentum is leaving or entering the
ball in any other way (there is a flux of momentum corresponding to air
pressure, but it is such that its total over the whole surface is approximately
zero).

We assume that momentum satisfies a balance law. Choose an imagin-
ary, closed control surface that tightly wraps the tennis ball and moves
with it. From the description above we have

𝑡0 = 0 s , 𝑡1 = 2 s ,

𝑷(𝑡0) =


0
1.70
0.98

 N s , 𝑭(𝑡) =

0
0
0

 N (const.) , 𝑮(𝑡) =


0
0

−0.579

 N (const.) .

The balance law (5.4) allows us to find the amount of momentum in the
tennis ball at time 𝑡1 = 2 s:

𝑷(𝑡1) = 𝑷(𝑡0) +
∫ 𝑡1

𝑡0

𝑭(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑮(𝑡)d𝑡

= 𝑷(𝑡0) + 𝑭 · (𝑡1 − 𝑡0) + 𝑮 · (𝑡1 − 𝑡0) (because 𝑭 , 𝑮 are constant)

=


0

1.70
0.98

 N s +

0
0
0

 N · 2 s +


0
0

−0.579

 N · 2 s

=


0

1.70
−0.18

 N s

We see that two seconds later the ball’s momentum has the same 𝑥-
and 𝑦-component, but its 𝑧-component points downward – which means
that the ball is moving downward.

The description above actually has enough information for applying
the balance law in differential form, formula (5.7), because the value of the
influx 𝑭 and supply 𝑮 are given at every time 𝑡 (they are constant). We

93



5. Physical laws 5.5. Balance laws

find that, at any time 𝑡 between 𝑡0 and 𝑡1, the rate of change of momentum
is

d𝑷(𝑡)
d𝑡 = 𝑭(𝑡) + 𝑮(𝑡)

=


0
0
0

 N +


0
0

−0.579

 N

=


0
0

−0.579

 N

So we could find the momentum at time 𝑡1, or at any other time between
𝑡0 and 𝑡1, by an easy integration:

𝑷(𝑡1) = 𝑷(𝑡0) +
∫ 𝑡1

𝑡0

d𝑷(𝑡)
d𝑡 d𝑡

=


0

1.70
0.98

 N s +
∫ 𝑡1

𝑡0


0
0

−0.579

 N d𝑡

=


0

1.70
0.98

 N s +


0
0

−0.579

 N · (𝑡1 − 𝑡0) (because the integrand is constant)

=


0

1.70
0.98

 N s +


0
0

−0.579

 N · 2 s

=


0

1.70
−0.18

 N s

5.5.4 Example with a static control surface

Consider again the example of a cylindrical block of ice moving downward, ¾ § 5.4.3 page 87
in a vacuum, during a lapse of time of 0.5 s, depicted in the side picture
below. In the previous example we discussed the net amount of matter
that crosses, in a downward direction, the circular surface separating the
initial and final location. Now we are instead interested in the net amount
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of momentum that crosses that surface. We shall therefore use the balance
of momentum (5.4).

Let’s try using a strategy analogous to that adopted in the previous
example with the conservation of matter, considering a static closed control
surface at the final position of the block of ice. In the previous analysis
we were given the initial and final contents within the control volume. So
suppose we are given this information:

𝑡0 = 0 s , 𝑡1 = 0.5 s , 𝑷(𝑡0) =

0
0
0

 N s , 𝑷(𝑡1) =


0
0

−4.72

 N s ,

At the initial time 𝑡0 the there’s no momentum within the control volume,
because it’s empty. At the final time we are told that the control volume
contains a fully downward momentum of magnitude 4.72 N s.

Unfortunately we can’t yet find the integrated flux of momentum: the
problem is that we don’t have enough data to apply the balance law (5.4).
It is also necessary to know the supply of momentum 𝑮(𝑡), or at least its
time integral. This is an example of what we said previously: balance laws ¾ § 5.5 page 90
in general require more information than conservation laws.

t1 t2
z

x

initial
situation

final
situation

Suppose we are told that the net supply of momentum generated
within the control volume, during the 0.5 s, has magnitude 1.57 N s and fully
downward direction. That is,∫ 𝑡1

𝑡0

𝑮(𝑡)d𝑡 =


0
0

−1.57

 N s

Now we can use the balance law (5.4) to find the integrated influx:∫ 𝑡1

𝑡0

𝑭(𝑡)d𝑡 = 𝑷(𝑡1) − 𝑷(𝑡0) −
∫ 𝑡1

𝑡0

𝑮(𝑡)d𝑡

=


0
0

−4.72

 N s −

0
0
0

 N s −


0
0

−1.57

 N s

=


0
0

−3.15

 N s
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5.5.5 Another example with a moving control surface

Let us finish with a quick analysis of the block of ice, but using a moving
control surface instead. We consider one that tightly wraps the block of
ice at all times between 𝑡0 and 𝑡1.

Note we are using a different control surface and volume from the
previous example. The values of momentum contents and fluxes may
therefore be different from the previous ones, which referred to other
regions of space. In order not to get confused, we represent the present
ones using different symbols – let’s underline them, for instance (we could
use any other graphical symbol, or simply change the letters themselves).

Let’s suppose that we want to know how much is the integrated supply
of momentum in the present control volume, between times 𝑡0 and 𝑡1. In
order to find it from the balance of momentum, we need to know the initial
and final momentum content, as well as the integrated influx.

We are told that the block initially has zero momentum (because it is
dropped and has therefore zero velocity at that instant), and a downward
momentum with magnitude 4.72 N s at the final time. Moreover there is
no flux of momentum through a surface that moves along with the block.
Our data are therefore

𝑡0 = 0 s , 𝑡1 = 0.5 s ,

𝑷(𝑡0) =

0
0
0

 N s , 𝑷(𝑡1) =


0
0

−4.72

 N s , 𝑭(𝑡) =

0
0
0

 N (const.) .

We have enough data to find the integrated supply of momentum
generated within the moving control volume:∫ 𝑡1

𝑡0

𝑮(𝑡)d𝑡 = 𝑷(𝑡1) − 𝑷(𝑡0) −
∫ 𝑡1

𝑡0

𝑭(𝑡)d𝑡

=


0
0

−4.72

 N s −

0
0
0

 N s −
∫ 𝑡1

𝑡0


0
0
0

 N d𝑡

=


0
0

−4.72

 N s

Note again how the momentum flux and supply in the present analysis
are different from the previous one, because they refer to different control
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surfaces and volumes. For instance, the integrated flux∫ 𝑡1

𝑡0

𝑭(𝑡)d𝑡 =


0
0

−3.15

 N s ≠
∫ 𝑡1

𝑡0

𝑭(𝑡)d𝑡 =

0
0
0

 N s .

and also the integrated supply is different:∫ 𝑡1

𝑡0

𝑮(𝑡)d𝑡 =


0
0

−1.57

 N s ≠
∫ 𝑡1

𝑡0

𝑮(𝑡)d𝑡 =


0
0

−4.72

 N s

- Fluxes and supplies depend on the particular control surface and its motion

The integrated flux
∫ 𝑡1

𝑡0
𝑭(𝑡)d𝑡 and integrated supply

∫ 𝑡1

𝑡0
𝑮(𝑡)d𝑡 that

appear in conservation and balance laws are strictly dependent on the
sequence of closed control surfaces and volumes that we choose.

Therefore, if we analyse the same physical phenomenon with a
new set of control surfaces, in general we cannot expect the results of
calculations with the old set to be valid for the new one.

« Exercise 5.3

Consider once more the block of ice analysed in the previous two
examples.

This time choose a static closed control surface that coincides with
the initial position of the block. This surface therefore includes all ice
at time 𝑡0, but is empty at time 𝑡1. The initial and final momentum
contents are zero.

Calculate the integrated supply for this new control surface
between 𝑡0 and 𝑡1.

(Hint: consider the results from the example of § 5.5.4, and use the
symmetry of fluxes to find the flux through the bottom part of the control
surface of the present exercise. Recall also that the fluxes through the side
and top surfaces are zero.)
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£ Balance laws in General Relativity

Conservation and balance laws appear simpler from the point of view of
Relativity Theory. From a four-dimensional spacetime perspective, a 3D
volume is a region, called hypersurface, having one less dimension than
spacetime. But a sequence of 2D surfaces through time is also just a region
having one less dimension than spacetime – two spatial dimensions
and one temporal one. Thus the distinction between the 3D region at
𝑡0, the sequence of 2D surfaces between 𝑡0 and 𝑡1, and the 3D region at
𝑡1 disappear: they are seen to be just different parts of the same three-
dimensional hypersurface. We perceive some parts of this hypersurface
as belonging “to the same time”, showing their three dimensions all
at once; and other parts as extending through time, showing only two
dimensions at any time. In fact, different observers make this division in
different ways.

And from a spacetime perspective, the amount of a quantity 𝐸(𝑡0) or
𝐸(𝑡1) within a 3D region is seen as a flux through time; so its apparent
difference from the flux 𝛷 also disappear.

Spacetime representation of
the evolution of a closed
control surface, containing
some pointlike objects (adap-
ted from Misner et al. 2017)

£ What about the magnetic flux?

In the case of magnetic flux, the idea of a conservation law is analogous,
but is formulated with one less spatial dimension: we consider a closed
1D curve at 𝑡0, one at 𝑡1, and a sequence in between these times. The
magnetic flux turns out to be a quantity for which it’s possible to ask how
much of it is “linked” to a closed curve, and how much of it is crossing a
closed curve. One way to understand this is to imagine magnetic flux as
a bundle of tubes or lines that are either closed or extend to infinity. It
is a very fascinating quantity, and one may wonder if other quantities
exist which satisfy similar balances even with one less dimension. But
we shall not pursue magnetic flux and related topics in these notes.

5.6 Constitutive relations

In the previous sections we have seen several examples of use of conserva-
tion and balance laws. They allowed us to determine or predict the amount
of quantities in given spatial regions or crossing through surfaces.

The examples also showed that extra information is always needed in
order to use the balance laws. For instance, in the example with the tennis ¾ § 5.5.3 page 93
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ball we said that there was no flux of momentum through the moving
control surface (the flying ball). In the example with the block of ice we ¾ § 5.5.4 page 94
said “where there’s no matter, there’s no momentum”; and we also said
that the flux of momentum was zero on some surfaces, but non-zero on
others. Well, how did we know?

This kind of information and physical properties were not something
we could deduce from the conservation or balance laws.

Indeed those were examples of physical properties that apply, not
universally, but only to some specific phenomena, and only to some theory-
dependent degree of approximation. They were examples of constitutive
relations:

] Constitutive relation

A constitutive relation, also called constitutive equation, or closure
equation, or constitutive property, is a physical relationship or property
that is only true for specific physical phenomena, for specific scales
of time and space, and for specific ranges of measurement precision.

Constitutive relations express the diversity that we observe around
us, for example the fact that a body of water can easily change shape
upon movement, as opposed to a block of concrete, which we rely on for
its rigidity. The differences between states of matter – solid, liquid, gas,

Four states of matter (image
by Spirit4694)

plasma, and there are others – arise from different constitutive relations.
Constitutive relations also mark the difference between specialized or

approximate physical theories; for example between Newtonian mechanics,
which applies only for low speeds and low energy concentrations (hence
weak gravitational fields and small spacetime curvature), and general
relativity, which applies on all scales, including cosmological scales.

When we read that a new physical phenomenon has been discovered,
usually that means that a new constitutive relation has been discovered.
Depending on the specific scientific field you’ll work in, you’ll learn some
constitutive relations in more detail than others.

Constitutive relations come in a great variety of mathematical forms.
Some of them are simple algebraic relations between the volume content
of one quantity and the flux of another. Others involve spatial or time
derivatives. Other still involve integrals in space or in time.
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5.6.1 Examples

Let us briefly discuss some of the constitutive equations that have silently
been used in the examples of the previous sections. All the constitutive
relations below are valid only in “Newtonian approximation”, that is,
when speeds are much lower than the speed of light and gravitation is
weak.

Constitutive relation for mass-energy and matter. If a small control
volume contains an amount of matter 𝑁 , then it also contains
an amount of mass-energy

𝑚 = 𝜌𝑁

where 𝜌, called molar mass, is (approximately) a constant that depends
on the kind of matter. This constitutive relation is the reason why an
amount of matter is often quantified in terms of mass.

Constitutive relation for momentum and matter. Take a small control
volume containing an amount of matter 𝑁 moving with velocity
𝒗 (and recall that there’s a connection between velocity and flux ¾ § 4.9 page 75
of matter). Then this control volume also contains an amount of
momentum

𝑷 = 𝑚𝒗 ≡ 𝜌𝑁 𝒗 This is the famous relation
that old textbooks take as the
definition of momentum.

Constitutive relation for supply of momentum. If a small control volume
contains an amount of mass-energy 𝑚, then it also has a supply of
momentum

𝑮 = 𝑚𝑔 = 𝜌𝑁 𝒈

where 𝒈 is a vector that depends on the gravitational field (it ex-

(image from NASA5)

presses spacetime curvature). This constitutive relation expresses the
gravitational force.

For physical phenomena on the Earth’s surface, the vector 𝒈 is approx-
imately constant: it points towards the ground and has magnitude
𝑔 := |𝒈 | ≈ 9.8 N/kg ≡ 9.8 m/s2. In a coordinate system (𝑥, 𝑦, 𝑧) where
𝑧 points upward, it can be written

𝒈 = −𝑔

0
0
1

 .
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For physical phenomena further away from Earth, for instance when
dealing with satellite motion, the vector 𝒈 points towards the Earth’s
centre and has magnitude

𝑔 =
𝐺𝑀E

𝑟2

where 𝐺 = 6.67 N m2/kg2 is the gravitational constant, 𝑀E = 5.97 ×
1024 kg is Earth’s mass6, and 𝑟 is the distance of the control volume
from the Earth’s centre.

Constitutive relation for energy-mass of matter. Take a small control
volume on Earth’s surface containing an amount of matter 𝑁 , and
such that there is no flux of matter across its surface. In a coordinate
system (𝑥, 𝑦, 𝑧) where 𝑧 points upward, this control volume also
contains an amount of energy-mass

𝐸 = 𝐸0 +𝑈 + 1
2𝑚𝑣2 + 𝑚𝑔𝑧

where the first term is a constant zero level of energy, the second term
𝑈 is called internal energy, the third is called kinetic energy, and the
fourth gravitational potential energy. The internal energy 𝑈 is typically
a function of the amount of matter 𝑁 .

Matter enters this formula also through the constitutive relation
𝑚 = 𝜌𝑁 . The zero value 𝐸0 is usually unimportant because we mostly
work with energy changes. This value is huge in ordinary situations. ¾ § 3.4 page 37
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Chapter 6

The Seven Wonders of the world

[Marco Polo:] “. . . You take delight not in a city’s seven or
seventy wonders, but in the answer it gives to a question
of yours.”

[Kublai Khan:] “Or the question it asks you, forcing you to
answer, like Thebes through the mouth of the Sphinx.”

I. Calvino 1979

6.1 Seven universal balance laws

The reason for introducing the seven primitive quantities, which are ¾ § 3.1 page 32
common to all our main physical theories, is that each of them obeys
a balance law. More precisely: matter, electric charge, and magnetic flux ¾ § 5.3 page 83
actually obey conservation laws, like eq. (5.1). Whereas energy, momentum,
angular momentum, and entropy satisfy balance laws, like eq. (5.3), that may
have a supply; only in special circumstances these quantities also obey
conservation laws.

What’s remarkable about these seven balance laws?

• They are known, so far, to be satisfied by all physical phenomena, from
subatomic scales to cosmological scales. No exceptions are known.

• They are satisfied in all our main physical theories, approximate or not:
from Newtonian mechanics to special relativity, from general relativity to
quantum theory.

• Each one can be expressed by the same mathematical equation in all of
these theories.
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In other words they are, as far as we know, universal. These balances are ¾ § 5.2 page 81
truly the Seven Wonders of the World, even more long-lasting than the
traditional “seven wonders”1 or the “new seven wonders”2:

] The seven universal balance laws

Conservation of matter
Conservation of electric charge
Conservation of magnetic flux

Balance of energy
Balance of momentum

Balance of angular momentum
Balance of entropy

These laws appear in all our physical theories and physics formalisms.
In some physical theories, such as Newtonian thermo-mechanics, all these
balance laws are, or can easily be taken to be, the fundamental laws
on which the theory is built. In other theories some of these laws are
taken as fundamental, while others are derived from more fundamental
laws – but nevertheless all these balances are still universally satisfied. In

The Einstein equations,
which can be deceivingly
simply written as

𝑮 = 8π𝐺
𝑐4 𝑻 ,

include the balances of en-
ergy, momentum, angular
momentum as special con-
sequences.

general relativity, for instance, the conservation of matter, electric charge,
magnetic flux, and the balance of entropy are taken as fundamental, but
the balances of energy, momentum, angular momentum are a consequence
of the so-called Einstein equations.

It is therefore extremely useful to learn these universal balances, no
matter what kind of specialized theory and physical phenomena you
may end up working with in the future. You can apply these balances to
any kind of physical phenomenon or problem: construction of bridges,
control of chemical reactions, operation of GPS navigation and satellites,
monitoring of nuclear power plants, sending robots to Mars, collisions of
subatomic particles, cosmology. Every physical phenomenon involves at
least one of these seven balances in its physical description.

6.2 General form of the universal balance laws

It is important to always keep in mind the setup that lies behind each
universal balance law.
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Recall that a balance or conservation law always involves a choice of
coordinates (𝑡 , 𝑥, 𝑦, 𝑧) (including a coordinate time) and sequence of closed ¾ § 5.4 page 83
control surfaces: it states that a particular “budget” must hold when we
check what’s within these surfaces and what flows through them.

Also recall that we are free to choose this sequence of closed control
surfaces as we please. A balance law is so powerful because it holds no
matter what our choice of surfaces is.

The “budget” involves three amounts:

volume content: how much of a quantity is within a control volume;

influx: how much of a quantity is flowing in through a closed control
surface per unit time;

supply: how much of a quantity is being created or destroyed within a
control volume per unit time; this is zero for a conservation law.

The budget is expressed in the following general forms:

] General form of the universal balance laws

vol. content(𝑡1) = vol. content(𝑡0) +
∫ 𝑡1

𝑡0

influx(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

supply(𝑡)d𝑡

integral form

d vol. content(𝑡)
d𝑡 = influx(𝑡) + supply(𝑡)

differential form

If the supply(𝑡) is always zero, then we have a conservation law.
The entropy balance is similar, except that its supply is left unspecified
and must always be non-negative.
The expressions above are valid in any system of coordinates, and in
Newtonian mechanics, general relativity, and even quantum theory if the
symbols are interpreted as so-called statistical operators, which encode
probabilistic properties.

The individual balances and symbols for matter, momentum, energy,
angular momentum, entropy are also presented in table 6.1 p. 106.
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integral form differential form

m
at

te
r

𝑁(𝑡1) = 𝑁(𝑡0) +
∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡 −
∫ 𝑡1

𝑡0

A (𝑡)d𝑡 d𝑁(𝑡)
d𝑡 = 𝐽(𝑡) −A (𝑡)

m
om

en
tu

m

𝑷(𝑡1) = 𝑷(𝑡0) +
∫ 𝑡1

𝑡0

𝑭(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑮(𝑡)d𝑡 d𝑷(𝑡)
d𝑡 = 𝑭(𝑡) + 𝑮(𝑡)

en
er

gy 𝐸(𝑡1) = 𝐸(𝑡0) +
∫ 𝑡1

𝑡0

𝛷(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑅(𝑡)d𝑡 d𝐸(𝑡)
d𝑡 = 𝛷(𝑡) + 𝑅(𝑡)

an
gu

la
r

m
om

en
tu

m

𝑳(𝑡1) = 𝑳(𝑡0) +
∫ 𝑡1

𝑡0

𝝉(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑴(𝑡)d𝑡 d𝑳(𝑡)
d𝑡 = 𝝉(𝑡) + 𝑴(𝑡)

en
tr

op
y

𝑆(𝑡1) ≥ 𝑆(𝑡0) +
∫ 𝑡1

𝑡0

𝛱(𝑡)d𝑡 d𝑆(𝑡)
d𝑡 ≥ 𝛱(𝑡)

Table 6.1 Five of the seven universal balance laws. These formulae are valid in Newtonian
mechanics, general relativity, and even quantum theory if their symbols are interpreted
as ‘statistical operators’.

£ Concise mathematical form of the universal balances

The seven balances can be expressed very concisely if we use the language
of differential forms3. These are geometric objects that associate a number to
any curve, surface, or volume of our choice. In terms of differential forms,
even the difference between the ‘integral’ and ‘differential’ forms of the
balance laws disappear. The balances for matter, momentum, energy,
angular momentum, entropy then assume these very concise expressions:

d𝑁 = −A d𝐸 = 𝑅 d𝑷 = 𝑮 d𝑳 = 𝑴 d𝑆 ≥ 0

similarly for the conservation of electric charge and magnetic flux.
If you want to learn more about differential forms take a look at the

books by Burke 1987; 1995 and Bossavit 1991.
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6.2.1 Roles of the seven balances in description and
prediction

The seven universal balances govern every physical phenomenon. Yet this
doesn’t mean that all of them are always used explicitly in the description
or prediction of physical phenomena.

• For some physical phenomena, all the seven universal balances enter
our calculations.

The description of how a com-
mon lighter works, thanks
to piezoelectricity4, requires
more or less all seven univer-
sal laws to be explicitly ac-
counted for.

• For other physical phenomena, some of the seven balances do not
appear explicitly in our calculations; yet they still enter implicitly in the way
we choose to set up or describe the phenomenon.

For example, we may choose control volumes or control surfaces in
such a way that some conservation laws are automatically satisfied. A
typical case is the choice of control surface around a given object (amount
of matter), which guarantees that the law of conservation of matter is
automatically satisfied. As another example, sometimes we simplify a
physical phenomenon to one spatial dimension only; think of when we
throw a ball vertically in the air, and only consider its height from the
ground. In such a case we can make some predictions using only the
balance of energy, apparently avoiding the balance of momentum. But
in reality, the fact that the ball can be considered as moving vertically is
possible because momentum is balanced in the horizontal directions. The
balance of momentum is therefore still necessary for this prediction, but it
has been silently taken care of.
• For still other physical phenomena, some of the seven balances may

not be required because we do not need the kind of physical information
they provide. We saw an example of this with the flat-tyre problem, where ¾ § 5.4.2 page 87
we only used the conservation of matter but we weren’t interested in what
happened to other quantities like energy or momentum, or in how the
tyre was moving.

Some physical phenomena may be predicted using one particular
subset of the seven balances, or alternatively a different subset, as we
please. For instance a given problem might be solved using conservation of
matter and balance of momentum, or alternatively by using conservation of
matter and balance of energy. We shall see examples of all these possibilities
in the rest of these notes.

But the fact that the seven universal balances govern every physical
phenomenon doesn’t mean that they can be used alone, by themselves.
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In the vast majority of cases they need to be augmented by appropriate
constitutive equations. We saw examples of this fact in the chapter about
physical laws. ¾ § 5 page 79

In the next chapters we shall discuss the seven universal balance laws
in more detail. For almost each of them we shall give its mathematical
expression, discuss some constitutive relations that are commonly used
with it, and examine some example applications.

Note that some constitutive relations will reappear again and again in
different chapters, because they connect different quantities, and so must
be discussed in connection of each of the quantities they connect.

6.3 Numerical time integration and simulations

6.3.1 Prediction and forecast

We have mentioned ‘prediction’ several times in the present notes: pre-
dicting the value of a quantity, predicting a physical behaviour, and so on.
What do we mean by ‘prediction’, more exactly?

This word is used in mainly two ways in physics; one more general
and the other more specific.

In the general sense, predicting something means managing to find
out some piece of information, not by direct observation or measurement,
but somehow arriving at it from other information available. For example
we can predict that there’s a person in a particular room because the light
in that room is on, and is never on when it’s empty. So we know there’s a
person not because we have taken a look inside and seen the person, but
thanks to other information instead.

As a more physical example, we may be able to predict that the pressure
inside a bike tyre has a particular value, just from knowing the volume
of the tyre, the amount of air in it, and the air’s temperature – without
directly measuring the pressure with a manometer. Another example is
what you did in Exercise 2.1- 1.: you predicted the time lapse of a GPS
satellite’s clock, by using the time lapse of your own clock and the laws of
general relativity.

In these two examples, the predictions are about a piece of information
– pressure, time lapse – that occurs at the same time as the information
we have – volume, your time lapse, and so on. (We are speaking about
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coordinate time; recall that it doesn’t make sense to say that two events ¾ § 2.1 page 21
occur at the same physical time, unless they occur at the same place.)

In the more specific sense, we use ‘prediction’ to mean that we find out
some piece of information occurring at a later coordinate time, arriving at
it from information occurring at earlier coordinate times. Often this means
that it would even be impossible to observe that piece of information,
because it hasn’t happened yet! In this case we can also use the more
precise and less pretentious term forecast.

Sending probes, such as the
Perseverance rover5, to other
planets requires a careful pre-
diction of their trajectory (im-
age: NASA6)

‘Prediction’ in this sense, or forecast, is extremely important in our
technologies and in human activity in general. We often wish to forecast
tomorrow’s weather. In designing a bridge, we want to forecast whether it
will be able to sustain certain loads. In sending a probe to Mars, we want
to predict where Mars will be, and what trajectory our probe will follow.

6.3.2 The special role of the universal balance laws, and
finite-difference approximations

When we look at physics from the point of view of forecasting, we realize
the very special position and role of the universal balance laws. They state
that a budget holds among several quantities, and these quantities refer to
different times. With enough information about some quantities at some
earlier times, they therefore determine the values of some quantities at
later times.

We shall now discuss the basics of how the universal balances can be
applied, together with constitutive relations, to make concrete numerical
predictions in actual physical situations.

Recall again the integral and differential forms of a balance law; we
use the symbols for energy here, but the reasoning is valid for any other
quantity:

𝐸(𝑡1) = 𝐸(𝑡0) +
∫ 𝑡1

𝑡0

𝛷(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑅(𝑡)d𝑡

integral form

d𝐸(𝑡)
d𝑡 = 𝛷(𝑡) + 𝑅(𝑡)

differential form

If 𝑅 = 0, then this is a conservation law.
From either of these forms we can find an approximate mathematical

expression to make predictions about a short instant of time ahead. Let’s
see how this is done from the integral form.
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Suppose that the lapse of time between 𝑡0 and 𝑡1:

Δ𝑡 = 𝑡1 − 𝑡0

is extremely short. So short that the flux 𝛷(𝑡) and the supply 𝑅(𝑡) can’t
change appreciably during this time lapse, and we can take them as
constant:

𝛷(𝑡) ≈ 𝛷(𝑡0) 𝑅(𝑡) ≈ 𝑅(𝑡0)

(if they do change appreciably, then we consider an even shorter Δ𝑡). If
they are practically constant, then their integrals become

Recall that∫ 𝑏

𝑎
const d𝑥 = const · (𝑏 − 𝑎)

∫ 𝑡1

𝑡0

𝛷(𝑡)d𝑡 ≈
∫ 𝑡1

𝑡0

𝛷(𝑡0)d𝑡 = 𝛷(𝑡0) (𝑡1 − 𝑡0) = 𝛷(𝑡0)Δ𝑡∫ 𝑡1

𝑡0

𝑅(𝑡)d𝑡 ≈
∫ 𝑡1

𝑡0

𝑅(𝑡0)d𝑡 = 𝑅(𝑡0) (𝑡1 − 𝑡0) = 𝑅(𝑡0)Δ𝑡

And finally, considering that 𝑡1 = 𝑡0 + Δ𝑡, the balance law in integral form
can be written approximately as

𝐸(𝑡0 + Δ𝑡)
=𝐸(𝑡1)

≈ 𝐸(𝑡0) +𝛷(𝑡0)Δ𝑡
≈
∫ 𝑡1
𝑡0
𝛷(𝑡)d𝑡

+𝑅(𝑡0)Δ𝑡
≈
∫ 𝑡1
𝑡0
𝑅(𝑡)d𝑡

Factoring Δ𝑡 we obtain:

] Finite-difference approximation

𝐸(𝑡0 + Δ𝑡) ≈ 𝐸(𝑡0) + [𝛷(𝑡0) + 𝑅(𝑡0)]Δ𝑡 (6.1)

called a finite-difference approximation.

This equation says that if we know the value of the volume content 𝐸, the
influx 𝛷, and the supply 𝑅 (which is zero for a conservation law) at time
𝑡0, then we can predict the value of the volume content a short time later,
𝐸(𝑡0 + Δ𝑡).

For example, suppose that the total amount of energy in a given control
volume, at time 𝑡0 = 20 s is 𝐸(𝑡0) = 500 J . At that same time there’s a net
influx of 𝛷(𝑡0) = −30 J/s into the control volume. And let’s suppose that
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the supply is zero, 𝑅(𝑡0) = 0 J/s . The amount of energy in the control
volume 0.1 s later, that is, at time 𝑡0 + Δ𝑡 = 20 s + 0.1 s = 20.1 s , is then

𝐸(20.1 s) ≈ 𝐸(𝑡0) + [𝛷(𝑡0) + 𝑅(𝑡0)]Δ𝑡
≈ 𝐸(20 s) + [𝛷(20 s) + 𝑅(20 s)] · 0.1 s
≈ 500 J + [−30 J/s + 0 J/s] · 0.1 s
≈ 497 J .

This basic idea is the same as the one behind Euler’s method7.

- A control-surface sequence is understood

As you recall from the definition of conservation and balance law, we ¾ § 5.1 page 84
must have chosen a sequence of closed control surfaces. How this sequence
is chosen must be either clearly stated or understood from the context.
If this sequence is not specified, the volume contents and fluxes above
don’t have any clear meaning.

Keep in mind that the finite-difference approximation (6.4) that we
derived is not the only possible one. They key step in our derivation
was the approximation of the integrals appearing in the integral form of
the balance law. Other approximating approaches are possible for them,
and they lead to finite-difference approximations of slightly different
forms. Entire books are devoted on these approximation schemes, and
if you’ll work in some physics or engineering fields you’ll learn several
of them in more detail. Some of these alternative forms lead in fact to
improved approximations and numerical predictions; they are, however,
more complicated and therefore we don’t discuss them here.

« Exercise 6.1

1. At time 𝑡 = 0 s the amount of oxygen in a control volume is
0 mol, and at that instant there is an influx of 8 mol/s. Assume
that oxygen satisfies a conservation law, and calculate its amount
in the control volume at time 𝑡′ = 0.01 s .

2. Try to obtain the finite-difference approximation starting from the
differential form of the balance law instead:

d𝐸(𝑡)
d𝑡 = 𝛷(𝑡) + 𝑅(𝑡)
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Use the fact that the derivative at a given time 𝑡0 can be approxim-
ately calculated as

d𝐸(𝑡0)
d𝑡 ≈ 𝐸(𝑡0 + Δ𝑡) − 𝐸(𝑡0)

Δ𝑡
.

6.3.3 Vector quantities

The finite-difference approximation is also valid for the balance law of a
vector quantity like momentum. We only have to remember that we have
three equations – one per vector component – instead of one:

𝑷(𝑡0 + Δ𝑡) ≈ 𝑷(𝑡0) + [𝑭(𝑡0) + 𝑮(𝑡0)]Δ𝑡

or


𝑃𝑥(𝑡0 + Δ𝑡) ≈ 𝑃𝑥(𝑡0) + [𝐹𝑥(𝑡0) + 𝐺𝑥(𝑡0)]Δ𝑡
𝑃𝑦(𝑡0 + Δ𝑡) ≈ 𝑃𝑦(𝑡0) + [𝐹𝑦(𝑡0) + 𝐺𝑦(𝑡0)]Δ𝑡
𝑃𝑧(𝑡0 + Δ𝑡) ≈ 𝑃𝑧(𝑡0) + [𝐹𝑧(𝑡0) + 𝐺𝑧(𝑡0)]Δ𝑡

(6.2)

« Exercise 6.2

1. Let’s follow the flight of a tennis ball by choosing a sequence of
closed control surfaces, with corresponding control volumes, that
tightly wrap it.

At time 𝑡0 = 0 s the amount of momentum and the supply of
momentum in the tennis ball are

𝑷(𝑡0) =

3
0
2

 N s 𝑮(𝑡0) =


0
0

−0.579

 N

and the influx of momentum is zero. Calculate the momentum
within the control volume 0.01 s later.

2. The tennis ball has a mass-energy 𝑚 = 0.059 kg . Assume the
constitutive relation for momentum: ¾ § 5.6.1 page 100

𝑷 = 𝑚 𝒗

What was the velocity of the tennis ball at time 𝑡0? How much is it
0.01 s later?
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6.3.4 Iterating: numerical time integration and boundary
conditions

The evolution equation (6.4) can obviously be used iteratively: once we
have the volume content 𝐸(𝑡 + Δ𝑡) at time 𝑡 + Δ𝑡, we can use it to find the
value at a slightly later time 𝑡 + Δ𝑡 + Δ𝑡, and so on:

𝐸(𝑡 + Δ𝑡) ≈ 𝐸(𝑡) + [𝛷(𝑡) + 𝑅(𝑡)]Δ𝑡

𝐸(𝑡 + 2Δ𝑡) ≈ 𝐸(𝑡 + Δ𝑡) + [𝛷(𝑡 + Δ𝑡) + 𝑅(𝑡 + Δ𝑡)]Δ𝑡

𝐸(𝑡 + 3Δ𝑡) ≈ 𝐸(𝑡 + 2Δ𝑡) + [𝛷(𝑡 + 2Δ𝑡) + 𝑅(𝑡 + 2Δ𝑡)]Δ𝑡

. . .

(6.3)
Code snippet8 from the
Particle System webpage9

iterating an evolution equa-
tion for momentum

] Numerical time integration

The numerical calculation of a quantity at successive time steps, with
algorithms similar to the one illustrated above, is called numerical
time integration, often simply shortened to integration.

6.3.5 Boundary conditions and constitutive equations

In order to do the numerical time integration above, you notice that we
need to know the new values of influx 𝛷 and supply 𝑅 at all subsequent
time steps. These values are not given by the evolution equation (6.4).

In fact, the evolution equation from a balance or conservation law
always gives us the volume content at a new time. So it would seem that we
have no ways to predict a flux or a supply. Where do we get these from?
There are two possibilities:
• They are simply assigned at every time step, completely or in part. This

may be possible because they are known, measured, or controlled.

] Boundary conditions

The quantities that we need to specify at each time for the predic-
tion or simulation of a physical phenomenon are called boundary
conditions, and their values boundary values.
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For example, for isolated moving objects such as the tennis ball in the
last exercise, it is known that the influx of momentum is zero if the object
is moving in vacuum, or sometimes negligible when moving through air;
and the constant value of the momentum supply (the gravitational force)
is also known. They are both given as boundary conditions for that specific
problems.
• They can be calculated, thanks to constitutive relations, from the values

of volume contents of other quantities – which are in turn predicted with
an evolution equation.

An example is the Newtonian constitutive relation for momentum ¾ § 5.6.1 page 100
and matter 𝑷 = 𝑚𝒗, briefly discussed previously. It actually relates the
flux of matter (which determines the velocity 𝒗) to the volume content of ¾ § 4.9 page 75
momentum. We shall see this relationship more clearly later in § 7.2, and
explore and use more examples of constitutive relations for the purpose of
simulating physical systems.

« Exercise 6.3

In Exercise 6.2 you calculated the evolution of the tennis ball’s
momentum – all its three components – for one timestep of 0.01 s.

1. Write a script, in your preferred programming language, that
implements the time-stepped evolution algorithm (6.3) and evolves
all three components of momentum. Assume:

• total duration of simulation is 2 s
• timestep is Δ𝑡 = 0.01𝑠
• momentum at initial time 𝑡0 = 0 s is 𝑷(𝑡0) = [3, 0, 3] N s
• momentum influx is zero at all times
• momentum supply is 𝑮 = [0, 0,−0.579] N at all times

The script should output the values of the three momentum
components of the tennis ball at all times; plot each of them
against time.

2. Recall the constitutive relation 𝑷 = 𝑚𝒗 for the tennis ball, with
𝑚 = 0.059 kg. Use the results of your script to plot the three
components of the velocity 𝒗 against time.

3. Make your script more general: it should initially ask for (or require
as arguments, if implemented as a function):

• the desired total simulation time
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• the timestep Δ𝑡 to be used in the algorithm
• the initial momentum 𝑷(𝑡0)
• the mass 𝑚 of the tennis ball (or other flying object)

and then use the constant momentum supply

𝑮 = 𝑚 · [0, 0,−9.81] N/kg

6.3.6 Numerical time integration of position

In many applications we are interested in how the position 𝒓 of a small
object, or of a small portion of an object, changes in time. The numerical
time integration that we have discussed for the volume contents of physical
quantities can be applied in an analogous way to the position vector 𝒓 and
its velocity.

The velocity 𝒗 of a point is the time derivative of its position: 𝒗(𝑡) = d𝒓(𝑡)
d𝑡 .

For a small time step Δ𝑡 we can approximately write

𝒗(𝑡) ≈ 𝒓(𝑡 + Δ𝑡) − 𝒓(𝑡)
Δ𝑡

Multiply by Δ𝑡 and bring to the right side all terms that refer to time 𝑡. We
obtain

] Time-stepped evolution equation for position

𝒓(𝑡0+Δ𝑡) ≈ 𝒓(𝑡0)+𝒗(𝑡0)Δ𝑡 or


𝑥(𝑡0 + Δ𝑡) ≈ 𝑥(𝑡0) + 𝑣𝑥(𝑡0)Δ𝑡
𝑦(𝑡0 + Δ𝑡) ≈ 𝑦(𝑡0) + 𝑣𝑦(𝑡0)Δ𝑡
𝑧(𝑡0 + Δ𝑡) ≈ 𝑧(𝑡0) + 𝑣𝑧(𝑡0)Δ𝑡

(6.4)

This formula says that if we know the position and the velocity at some
time, we can approximately predict the position a short time later. This
formula can also be iteraded as we did with a general balance law. This ¾ § 6.3.4 page 113
way we numerically time-integrate the position 𝒓(𝑡) and can therefore keep
track and predict the motion of an object.

The numerical time integration of a position vector 𝒓(𝑡) is often done
together with that of momentum 𝑷(𝑡). Thanks to the constitutive relation
𝑷 = 𝑚𝒗, knowledge of the momentum at a later timestep allows us to also
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know the velocity at that timestep. Here is how such an iteration might
look like. Suppose that the initial 𝒓(𝑡) and 𝑷(𝑡) are given, and also the
influx 𝑭 and supply 𝑮 are known at all times:

𝒗(𝑡0) = 𝑷(𝑡0)/𝑚

𝒓(𝑡0 + Δ𝑡) ≈ 𝒓(𝑡0) + 𝒗(𝑡0)Δ𝑡
𝑷(𝑡0 + Δ𝑡) ≈ 𝑷(𝑡0) + [𝑭(𝑡0) + 𝑮(𝑡0)]Δ𝑡

𝒗(𝑡0 + Δ𝑡) = 𝑷(𝑡0 + Δ𝑡)/𝑚

𝒓(𝑡0 + 2Δ𝑡) ≈ 𝒓(𝑡0 + Δ𝑡) + 𝒗(𝑡0 + Δ𝑡)Δ𝑡
𝑷(𝑡0 + 2Δ𝑡) ≈ 𝑷(𝑡0 + Δ𝑡) + [𝑭(𝑡0 + Δ𝑡) + 𝑮(𝑡0 + Δ𝑡)]Δ𝑡

𝒗(𝑡0 + 2Δ𝑡) = 𝑷(𝑡0 + 2Δ𝑡)/𝑚

𝒓(𝑡0 + 3Δ𝑡) ≈ 𝒓(𝑡0 + 2Δ𝑡) + 𝒗(𝑡0 + 2Δ𝑡)Δ𝑡
𝑷(𝑡0 + 3Δ𝑡) ≈ 𝑷(𝑡0 + 2Δ𝑡) + [𝑭(𝑡0 + 2Δ𝑡) + 𝑮(𝑡0 + 2Δ𝑡)]Δ𝑡

. . . (6.5)

Keep in mind that these are vector equations, so each one corresponds to
three components.

For some physical phenomena – such as planets orbiting around a star
or satellites around a planet – the momentum influx 𝑭 or supply 𝑮 may
also depend on the position 𝒓 . The scheme above works also in these cases.

6.3.7 Numerical time integration of position: example

Let’s see an example with a falling object. For simplicity we only consider
the 𝑧-coordinate, pointing upward, the other two coordinates having some
constant value. Assume these conditions:

• initial time is 𝑡0 = 0 s
• initial position is 𝑧(𝑡0) = 5 m
• initial momentum is 𝑃𝑧(𝑡0) = 30 N s
• mass-energy of object is 𝑚 = 4 kg
• momentum supply, gravity, is 𝐺𝑧 = −𝑚 · 9.81 N/kg = −39.23 N
• timestep is Δ𝑡 = 0.1 s
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Then numerical integration up to 𝑡 = 0.2 s would look as follows:
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obtained by continuing the
numerical integration for 2 s

𝑣𝑧(0 s) = 𝑃𝑧(0 s)/𝑚
= 30 N s/4 kg = 7.50 m/s

𝑧(0.1 s) ≈ 𝑧(0 s) + 𝑣𝑧(0 s)Δ𝑡
≈ 5 m + 7.50 m/s · 0.1 s = 5.75 m

𝑃𝑧(0.1 s) ≈ 𝑃𝑧(0 s) + [𝐹𝑧(0 s) + 𝐺𝑧(0 s)]Δ𝑡
≈ 30 N s − 39.23 N · 0.1 s = 26.08 N s

𝑣𝑧(0.1 s) = 𝑃𝑧(0.1 s)/𝑚
= 26.08 N s/4 kg = 6.52 m/s

𝑧(0.2 s) ≈ 𝑧(0.1 s) + 𝑣𝑧(0.1 s)Δ𝑡
≈ 5.75 m + 6.52 m/s · 0.1 s = 6.40 m

𝑃𝑧(0.2 s) ≈ 𝑃𝑧(0.1 s) + [𝐹𝑧(0.1 s) + 𝐺𝑧(0.1 s)]Δ𝑡
≈ 26.08 N s − 39.23 N · 0.1 s = 22.15 N s

. . .

« Exercise 6.4

Modify the script you made for part 1. of Exercise 6.3, so that it also
evolves the position 𝒓(𝑡) of the tennis ball.

Redo the numerical simulation you did for that exercise, with
the same numerical parameters, and with an initial position for the
tennis ball 𝒓(𝑡0) = [0, 0, 2] m.

Plot 𝑧(𝑡) and 𝑃𝑧(𝑡) against the time 𝑡, similarly to the two margin
plots above.

6.3.8 Applicability of numerical time integration

We have illustrated the numerical-evolution procedure, formulae (6.3)
and (6.5), focusing on momentum and position. But obviously this proced-
ure can be applied to any quantities that satisfy balance laws.

The time-stepping scheme discussed in the previous sections is very
crude and quickly leads to increasing numerical errors; see for instance
the examples on the Mass-Spring Model webpage10 of Physics Simulation
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in Visual Computing11. More refined and complex schemes are used for
concrete applications.

Yet, the simple time-stepping scheme that we have explored remains the
core of most numerical-evolution procedures, and allows us to understand
how they essentially work.

6.3.9 Example script for numerical time integration

We shall come back to numerical time integration in a later chapter, and
approach in a more systematic way the problem of writing a simulation
script.

For the moment, here is an example script, written in Octave12 (should
also work in MATLAB), that is a solution for Exercise 6.4 p. 117. Blue lines
are strictly related to numerical time integration; grey lines take care of
saving and plotting data. You can use this script as a starting point for
exercises that require scripting in the next chapters.

Download tennisball.m13
1 %%% tennisball.m
2 %% Numerical simulation of object motion in 2D with gravity
3 %% (base SI units used throughout)
4 %% Coordinates (y,z)
5 %% Parameters
6 m = 0.059; % tennis ball’s mass
7 %%
8 %% Initial values
9 t0 = 0; % initial time

10 y0 = 0; z0 = 2; % initial position
11 Py0 = 3; Pz0 = 0.75; % initial momentum
12 %%
13 t1 = t0 + 2; % final time
14 dt = 0.01; % time step
15 %%
16 %% Initialize values for loop
17 t = t0;
18 y = y0; z = z0;
19 Py = Py0; Pz = Pz0;
20 %%
21 Fy = 0; Fz = 0; % momentum influx (constant)
22 Gy = 0; Gz = -0.579; % momentum supply (constant)
23 %%
24 %% Plot & saving
25 %% adjust final time if not multiple of timestep
26 t1 = t1 + mod(t1-t0,dt);
27 %% Save values of all quantities at some steps during the simulation,
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28 %% for subsequente analysis or plotting
29 %% (saving at all timesteps could be too costly)
30 Nsaves = 200; % number of timepoints to save during the simulation
31 %% Calculate time interval for saving
32 dsave = (t1-t0)/(Nsaves-1);
33 if abs(dsave) < abs(dt)
34 error(’time interval between saves is smaller than timestep’)
35 end
36 %% Initialize vectors to contain saved values
37 tSave = nan(Nsaves,1);
38 ySave = nan(Nsaves,1); zSave = nan(Nsaves,1);
39 PySave = nan(Nsaves,1); PzSave = nan(Nsaves,1);
40 %% Save initial values
41 i = 1; % index that keeps count of savepoints
42 tSave(i) = t;
43 ySave(i) = y; zSave(i) = z;
44 PySave(i) = Py; PzSave(i) = Pz;
45 %% Initialize plot
46 cols = get(0, ’DefaultAxesColorOrder’);
47 plot(ySave(1), zSave(1), ’.’, ’Color’, cols(1,:)); axis(’tight’);
48 xlabel(’y/m’); ylabel(’z/m’); hold on;
49 %%
50 %% Numerical time integration
51 %% loop
52 while t < t1
53 %% We need Py,Px,y,z,vy,vz
54 %% we have y,z,Py,Pz
55 %% find vy,vz using constitutive relations
56 vy = Py/m; vz = Pz/m;
57 %%
58 %% Drive forward in time
59 %% update momentum
60 Py = Py + (Fy + Gy)*dt;
61 Pz = Pz + (Fz + Gz)*dt;
62 %% update position
63 y = y + vy*dt;
64 z = z + vz*dt;
65 %% update time
66 t = t + dt;
67 %%
68 %% Check whether to save & plot at this step
69 if min(abs([0 dsave] - mod(t-t0, dsave))) <= abs(dt)/2
70 i = i+1;
71 tSave(i) = t;
72 ySave(i) = y; zSave(i) = z;
73 vySave(i) = vy; vzSave(i) = vz;
74 PySave(i) = Py; PzSave(i) = Pz;
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75 plot(y, z, ’.’, ’Color’, cols(1,:));
76 pause(0.001);
77 end
78 end
79 %% Plot full trajectory
80 plot(ySave, zSave, ’Color’, cols(1,:)); axis(’tight’);
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Chapter 7

Conservation & balances of matter

“What you do in this world is a matter of no consequence,”
returned my companion, bitterly. “The question is, what
can you make people believe that you have done?. . . ”

Sherlock Holmes (A. C. Doyle) 1887

7.1 Formulation and generalities

] Balance and conservation of matter

Volume content: 𝑁 Flux: 𝐽 Supply: −A

𝑁(𝑡1) = 𝑁(𝑡0) +
∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡 −
∫ 𝑡1

𝑡0

A (𝑡)d𝑡

integral form

d𝑁(𝑡)
d𝑡 = 𝐽(𝑡) −A (𝑡)

differential form

(7.1)
The supply A is usually called activity, and A (𝑡) ≡ 0 in case of
conservation.

Conservation of matter is a law that we intuitively take for granted and
use continuously in our life. The very notion of ‘object’ – including living
objects – is possible thanks to this fundamental regularity of nature: we
can speak of objects because they exist for some time and we can follow
them as they move in space.
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7.1.1 Balance vs conservation of matter

The law of conservation of matter holds, as far as we know, for all kinds
of matter when considered together. More specifically it seems to hold, even

“All these operators conserve
𝐵 − 𝐿 [number of baryons 𝐵

minus number of leptons 𝐿], so
in any superunified theory we ex-
pect 𝐵 − 𝐿 to be conserved. . . ”

Wilczek & Zee 1979

in extreme physical conditions, if we count baryonic and anti-leptonic
matter as ‘positive’ and leptonic and anti-baryonic matter as ‘negative’. As
an example, consider a closed surface containing two neutrons (baryon
number +1), and some energy, in such a way that the total electric charge,
momentum, and angular momentum are zero. Then it’s today considered
impossible that the two neutrons could just disappear, and two protons
(baryon number +1 each) plus two electrons (lepton number +1 each)
appear in their stead, even if energy, momentum, and so on were exactly
the same. This is because otherwise we would have first 𝑁(𝑡0) = +2 and
then 𝑁(𝑡1) = +2 − 2 = 0, without any flux of matter: 𝐽(𝑡) = 0; conservation
of matter would be broken.

In many common and important physical situations, conservation laws
still hold for different kinds of matter individually. This is why we can
consider the amounts of different chemical elements – hydrogen, helium,
and so on – to be individually conserved in chemical reactions happening
in a chemical plant.

In other circumstances, however, conservation of these individual kinds
of matter does not hold anymore; for example in the previously mentioned
phenomena involving radioactive decay and nuclear energy. Yet in these ¾ § 3.2 page 34
circumstances we can still apply a balance law, with a non-zero supply or
sink.

7.2 Examples of constitutive relations

7.2.1 Relation between matter and mass-energy

The most common constitutive relation used together with conservation
of matter is the one relating an amount of matter 𝑁 with an amount of
mass-energy 𝑚.

As far as we know, if a control volume contains an amount of matter 𝑁 ,
then it always also contains an amount of mass-energy 𝑚 (but the opposite
is not always true: a control volume can contain mass-energy and no
matter). This amount of mass-energy is typically huge when measured in
joules. For instance, a volume with 𝑁 = 1mol of water (roughly 2×10−5 m3

for liquid water) contains approximately 𝑚 = 1.62 × 1015 J of mass-energy.
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The amount of mass-energy depends on the kind of matter and on other
quantities in that volume, and usually changes with time. These changes,
however, are typically extremely small compared to the total amount – ¾ § 3.4.2 page 39
say much less than 0.000 000 01 % in the example above with water! So, as
a very good approximation, we can consider this amount as practically
constant. The amount of mass-energy 𝑚 is therefore proportional to the
amount of matter 𝑁 , and we write

] Mass-energy of matter

𝑚 = 𝜌𝑁

where the proportionality factor 𝜌, called molar mass, depends on
the kind of matter and can be taken as practically constant in many
applications.

For instance, in many physical phenomena involving water we assume
the constitutive relation above, with a water molar-mass constant1 of
approximately 𝜌H2O = 0.0180 kg/mol. If a volume contains 𝑁 = 20 mol of
water, we usually attribute to it a mass-energy of

𝑚 = 𝜌H2O 𝑁

= 0.0180 kg/mol × 20 mol
= 0.36 kg .

The exact value of the molar-mass constant depends not only on the
substance but also on the context and application: the substance may
actually consist of a mixture of different kinds of matter. ‘Air’ for example
is a mixture of different chemical elements, and their proportion in the
mixture may depend on physical conditions such as temperature, and on
geographical position. ‘Water’ is a mixture of different isotopes3 (molecules

There are several different iso-
topes of water, with different
masses (image from U.S. Geo-
logical Survey2)

differing in the number of neutrons), and again the mixture proportions
may vary with physical conditions.

The constant relating mass-energy and amount of matter is the same
for volume contents and for fluxes. So to a matter flux 𝐽 we can associate
a mass-energy flux 𝜌𝐽. For instance, if through a surface there’s a flux of
𝐽 = 30 mol/s of water, then we associate to it a mass flux of

𝜌H2O 𝐽 = 0.0180 kg/mol × 30 mol/s = 0.54 kg/s .
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7.2.2 Conservation of mass: proxy for conservation of matter

In applications where we can consider the molar mass as practically
constant, we can then use ‘mass’ as a proxy for matter, and express the
balance of matter (7.1) as “conservation of mass” instead: we only need
to multiply volume content 𝑁 , flux 𝐽, and supply A by the molar-mass 𝜌
appropriate to that kind of matter.

- “Conservation of mass” is a proxy for conservation of matter

Keep in mind that many books speak of “conservation of mass”, but
they’re using mass as an approximate proxy for matter, in the sense
explained above.

« Exercise 7.1

At a particular time, a party balloon contains 0.012 kg of Helium. A
minute later, the same balloon contains 0.010 kg of helium. Assume
conservation of Helium, as well as a molar-mass for Helium4 𝜌He =

4 × 10−3 kg/mol.

1. How much is the integrated efflux of Helium, in moles, through
the balloon’s surface during the one-minute lapse of time?

2. Assume that the efflux of Helium was constant in time during the
one-minute time lapse. How much was the efflux of Helium, in
moles/second?

7.2.3 Radioactive decay

For radioactive substances, for which conservation does not hold for
individual kinds of matter, we still have a balance law where the supply
−A has a specific constitutive equation:

] Matter supply in radioactive decay

−A (𝑡) = −𝜆𝑁(𝑡)
where 𝜆 is positive and called the decay constant of that particu-
lar substance. The supply with changed sign, A , is usually called
activity5.
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If there is no influx of matter, 𝐽(𝑡) = 0, the balance law for the
substance then takes the form

d𝑁(𝑡)
d𝑡 = −𝜆𝑁(𝑡)

called the law of radioactive decay6. When we see this symbol
we know that there’s mat-
ter that’s only balanced, not
conserved – which involves
danger7.3 Examples of applications

7.3.1 Rigid-body and particle mechanics

In many applications, the law of conservation of matter can be used in
such a subtle way that we almost don’t notice that we’re actually using it.

This happens when we choose closed control surfaces through which
there is no flux of matter: 𝐽(𝑡) = 0. For example, in studying solid objects,
we choose control surfaces that tightly “wrap” and follow the object; think
of what we did in the tennis-ball examples and exercises of the chapter
on physical laws. With this choice, the amount of matter 𝑁 within the ¾ § 5.5.3 page 93
control surfaces doesn’t change in time, thanks to the law of conservation
of matter. So this law is hidden in the fact that we’re taking that amount of
matter as constant.

We saw an example of this procedure in the numerical evolution of the ¾ § 6.3.7 page 116
motion of a falling object. Take again a look at the timesteps in formula (6.5):
at each timestep the mass 𝑚 was assumed to be constant, not changing
with time. But as explained above, this mass is proportional to the amount ¾ § 7.2.2 page 125
of matter: 𝑚 = 𝜌𝑁 . So this assumption was guaranteed, implicitly, by the
law of conservation of matter.

7.3.2 Chemistry

One of the main assumptions in chemistry is the ‘permanence of atoms’.
This assumption imposes important restrictions in the stoichiometry7 of
chemical reactions, that is, in determining the amounts of products that
can appear from given amounts of reactants. For instance, the match-head
reaction8

3 P4 + 10 K Cl O3 → 3 P4O10 + 10 K Cl
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expresses that if 30 moles of oxygen (O) atoms appear among the reactants,
they must also appear among the products; same for the 12 moles of
phosphorus (P) atoms9, the 10 moles of potassium (K) atoms10, and so on.

This assumption is simply the statement of conservation of matter,
separately for each chemical element: since the reaction doesn’t let any
other matter go in or out, the flux 𝐽 for each chemical element must be
zero. Therefore the amount 𝑁 of each chemical element must be constant:
d𝑁(𝑡)/d𝑡 = 𝐽 = 0.

The assumption of the permanence of atoms is only approximate and
no longer valid in phenomena for which nuclear physics or particle physics
become relevant.

7.3.3 Climate

The laws of conservation and balances of matter turn out to be very useful
also in problems related to climate.

On the Earth’s surface and atmosphere we can assume a law of conser-
vation of matter for each of the stable isotopes11 of the chemical elements,
for instance the two stable carbon isotopes12 and the three stable oxygen
isotopes13. We can therefore follow these isotopes as they flow between dif-
ferent physical systems, like the atmosphere, the oceans, and the biosphere,
especially plants – in practice we are using huge control volumes.

For the radioactive isotopes, the law of radioactive decay applies, and ¾ § 7.2.3 page 125
from it we can deduce the age of different materials and objects like ice or
wood.

Volume content of CO2 in the
atmosphere in the years 1000–
2000. By the law of matter
conservation, there must have
been a net influx of CO2 into
the atmosphere in these years.
A vertical line is drawn at year
1769, when James Watt paten-
ted his steam engine (from
MacKay 2008 p. 6)

This is how we are able to say that human usage of fossil fuel is an
important factor in the increase of carbon dioxide (CO2) in the atmo-
sphere during the past 200 years or so. Take a look at the more detailed
explanations given by the Global Monitoring Laboratory14.

« Exercise 7.2

Measuring the relative amounts of carbon within an air pocket near
the surface of a block of ice, you find that one mole of air contains
10−12 mol of the radioactive isotope C14 . Making an analogous
measurement for an air pocket deeper in the ice, you find instead a
relative abundance of 2 × 10−13 mol of C14 . How old is the deeper
section of ice?
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Find out the ice’s age 𝑡ice by numerically evolving the balance
equation

d𝑁(𝑡)
d𝑡 = −𝜆𝑁(𝑡)

with 𝜆 = 0.000 122 yr−1, until you reach the amount 𝑁(𝑡ice) = 2 ×
10−13 mol. Use the procedure of eq. (6.4), starting from time 𝑡0 = 0 yr ¾ § 6.3 page 108
and 𝑁(𝑡0) = 10−12 mol, and assuming that the flow 𝐽(𝑡) of C14 is zero.
You can use a timestep Δ𝑡 = (1/365) yr.

7.3.4 Nozzle flow

The law of conservation of matter in its explicit form is at the heart of
fluid-dynamic problems. Consider the flow of a fluid (liquid or gas) for
instance through a pipe or through a jet engine. When we say that a flow is
steady we mean that the volume contents and the fluxes taken for whatever
control volumes and surfaces do not change in time (though they may
change in space). This condition can be viewed as a constitutive relation.

J1

-J2

N

Consider a control volume, for instance the one indicated in light blue
in the side picture. The amount of fluid 𝑁 in this volume is constant in
time: d𝑁(𝑡)

d𝑡 = 0. By the law of conservation of matter, the total influx must
then be zero:

0 =
d𝑁(𝑡)

d𝑡 = 𝐽(𝑡)

and it is given by the influxes through three surfaces: the side surface, the
one at the top, and the one at the bottom. The influx through the side
surface is zero. Let us denote the influx through the top surface by 𝐽1, and
the influx through the bottom surface by 𝐽2. We must therefore have

0 = 𝐽(𝑡) = 𝐽1(𝑡) + 𝐽2(𝑡) =⇒ 𝐽1(𝑡) = −𝐽2(𝑡)

that is, the influx through the top surface must equal the efflux through

(image from JetX15)

the bottom one. This is a very powerful deduction: consider that it is valid
at different sections of a jet engine, even if the flow of the fluid is turbulent,
and in even more general situations.

If the surfaces are small enough, we can also use the connection between ¾ § 4.9 page 75
flux and velocity:

𝑣1 =
𝐽1/𝐴1
𝑁/𝑉 𝑣2 =

−𝐽2/𝐴2
𝑁/𝑉
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where 𝐴1, 𝐴2 are the areas of the top and bottom surfaces, and 𝑣1, 𝑣2 the
downward velocities through them (hence the minus sign for the bottom
surface). From 𝐽1 = −𝐽2 we then find this important relationship:

𝑣1 𝐴1 = 𝑣2 𝐴2

that is, if the area through which the flux occur decreases, then the velocity
of the fluid through it increases, and vice versa. This is what we often

The thickness and velocity
variations of tap water are a
consequence of the law of con-
servation of matter

observe in water running from our taps. We can feel with our fingers that
the water stream is slightly faster at the bottom, right before it hits the
basin; and at this point the stream usually also thinner than at the top (the
presence of an aerator or of turbulence can mask this effect).
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Chapter 8

Balance of momentum

I hold in fact
(1) That small portions of space are in fact of a nature

analogous to little hills on a surface which is on the
average flat; namely, that the ordinary laws of geometry
are not valid in them.

(2) That this property of being curved or distorted is
continually being passed on from one portion of space to
another after the manner of a wave.

(3) That this variation of the curvature of space is what
really happens in that phenomenon which we call the
motion of matter, whether ponderable or etherial.

(4) That in the physical world nothing else takes place
but this variation, subject (possibly) to the law of
continuity.

W. K. Clifford 1876

8.1 Formulation and generalities

] Balance of momentum

Volume content: 𝑷 Flux: 𝑭 Supply: 𝑮

𝑷(𝑡1) = 𝑷(𝑡0) +
∫ 𝑡1

𝑡0

𝑭(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑮(𝑡)d𝑡

integral form

d𝑷(𝑡)
d𝑡 = 𝑭(𝑡) + 𝑮(𝑡)

differential form

(8.1)
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Among the seven universal balances, the balance of momentum is
probably the one most used in applications where motion or stability are
important. Newton’s famous “second law” is included in this balance as a

“LEX II. Mutationem motus
proportionalem esse vi motrici
impressæ, & fieri secundum
lineam rectam qua vis illa
imprimitur.”
“LAW II. The change of motion
is proportional to the motive
force impressed; and is made in
the direction of the right line in
which that force is impressed.”

Newton 1726a

special case, if we disregard the specific association that Newton made
between momentum and velocity.

- Amounts of momentum depend on the coordinate system

Remember that the amount of momentum 𝑷 in a volume, the flux 𝑭
through a surface, and the supply 𝑮 in a volume all depend on the
specific coordinate system (𝑡 , 𝑥, 𝑦, 𝑧). If we use a different coordinate
system, these amounts will be different for the same volume and surface.
For example, a tennis ball can contain a huge amount of momentum
with respect to one coordinate system, and zero momentum with respect
to another!

The importance of the balance of momentum comes to a great extent
from two kinds of constitutive relations:

• a small number of constitutive relations that connect the volume
content 𝑷 of momentum with the motion and flux of matter and of
the electromagnetic field;

• an amazingly wide variety of constitutive relations that connect, in
the most diverse ways, the flux 𝑭 of momentum with many properties
of matter, like its extension, deformation, motion, temperature, and
the simultaneous presence of charge and electromagnetic field.

Through this balance we can therefore describe and predict motions.
We saw a concrete example of this application in the numerical time ¾ § 6.3.7 page 116
integration of the motion of a falling object.

Momentum balance keeps
buildings from collapsing
(photo: Bryggen, Bergen, from
UNESCO World Heritage
Centre1)

But this balance is also essential in the opposite problem: when we
need to study things that don’t and shouldn’t move, like a building or a
bridge. In this case the balance is used to study which momentum fluxes
𝑭 and supply 𝑮 are necessary to ensure that the volume content 𝑷 of
momentum is constantly zero.
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8. Balance of momentum 8.2. Examples of constitutive relations

8.2 Examples of constitutive relations

8.2.1 Newtonian momentum: relation between momentum
and matter

One of the most important constitutive relations is the one connecting
momentum with the flux of matter. We have mentioned it several times in
the previous chapters, and used it in examples of numerical integration. ¾ § 6.2 page 112

Consider a small control volume containing an amount of matter 𝑁 .
From the constitutive equation between matter and mass-energy we know ¾ § 7.2.1 page 123
that this volume also contains an amount of mass-energy 𝑚 = 𝜌𝑁 . The
matter in this volume also has a velocity 𝒗 (possibly zero), related to its ¾ § 4.9 page 75
flux. The Newtonian formula for the momentum of matter then says
that the control volume also contains an amount of momentum 𝑷 that is
proportional to the mass-energy and the velocity:

] Newtonian constitutive relation for momentum

If a control volume contains an amount of matter 𝑁 having mass-
energy 𝑚 and velocity 𝒗, then it also contains an amount of mo-
mentum

𝑷 = 𝑚𝒗 = 𝜌
𝑉

𝐴


𝐽𝑥
𝐽𝑦
𝐽𝑧

 (8.2)

This relation is only valid for very small areas and volumes (we
should take the limit).

You are probably familiar with the first equality above; old textbook
present it as the definition of momentum. We know today that this equality
is only approximate: it’s only valid for small speeds compared to the speed
of light, in weak gravitational fields, and when changes in energy-mass
are small compared to the total.

8.2.2 Hookean spring: relation between momentum flux and
distance

We are all familiar with elastic bands, springs, and similar objects having
the following approximate properties: (a) one of their dimensions is
somehow singled out, maybe because more extended, with respect to
the other two; (b) if we try to modify their length along that particular
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dimension, they exert a tension or, in some cases, a pressure; (c) the tension
or compression are stronger, the more the extension in that dimension is
modified; (d) these objects return to an initial configuration when we don’t
try to modify their extension.

We know that tension and compression are particular kinds of forces, ¾ § 4.6 page 70
that is, momentum fluxes. Objects like elastic bands and springs therefore
create particular momentum fluxes that are related to their spatial exten-
sion. Their behaviour is therefore described by a constitutive relation about
the flux of momentum 𝑭 .

We can approximately treat these objects as control volumes for which
the following constitutive properties apply:

] Hookean spring

A Hookean spring is a control volume with the following properties:

• One dimension has a natural length 𝑙n that is much larger than the
other two, which are usually neglected.

• The total amount and supply of momentum 𝑷 within the control
volume are negligible.

• Across the (small) surfaces orthogonal to main dimension there is
an efflux of momentum equal to

𝑭e = −𝑘 Δ𝒍 (8.3)

this formula is called Hooke’s law.

𝑘 is a constant, called the elastic constant of the spring; Δ𝒍 is a vector
along the main dimension, with magnitude Δ𝑙 = |𝑙 − 𝑙n | equal to
difference between the present length 𝑙 and the natural length 𝑙n; it
points away from the control volume if 𝑙 > 𝑙n, and toward the control
volume if 𝑙 < 𝑙n.
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Note the minus sign in Hooke’s law. It means that if the present length is
larger than the natural one, 𝑙 > 𝑙n, then there flux of momentum getting
out of the spring is oriented towards the spring; that is, the spring exerts a
tensile force towards itself. And if the present length is smaller than the
natural one, 𝑙 < 𝑙n, then the flux of momentum getting out of the spring is
oriented away from the spring; that is, the spring exerts a compressive force
away from itself.

In modelling some physical problems we can put 𝑙n = 0 m: this
represents that the natural length of the spring is very small compared to
usual amounts by which the spring is stretched. Note that in this case the
spring always exerts a tension, never a pressure.

« Exercise 8.1

What are the physical dimensions of the elastic constant 𝑘? in which
units could we measure it?

8.2.3 Non-hookean springs

Items like rubber bands and strings deviate from Hooke’s law in a notable
way: they exert a purely tensile force, that is, they effect a tensile flux of
momentum, only if they are stretched beyond their natural, relaxed length.

This kind of behaviour can of course be modelled, at least qualitatively,
by a constitutive equation like the following:

] Constitutive equation for rubber bands and strings

Suppose that the two extremities of a rubber band have position
vectors 𝒓 𝑎 and 𝒓𝑏 , and that the natural length of the rubber band
is 𝑙n. Then the momentum effluxes at the extremities 𝒓 𝑎 and 𝒓𝑏 are
approximately given by

𝑭 𝑎𝑠 =

{
0 , if |𝒓 𝑎 − 𝒓𝑏 | ≤ 𝑙n

−𝑘
(
|𝒓 𝑎 − 𝒓𝑏 | − 𝑙n

) 𝒓 𝑎−𝒓𝑏
|𝒓 𝑎−𝒓𝑏 | , if |𝒓 𝑎 − 𝒓𝑏 | > 𝑙n

(8.4)

Note that 𝒓 𝑎−𝒓𝑏
|𝒓 𝑎−𝒓𝑏 | is just a unit vector directed from the position 𝒓𝑏 to

the position 𝒓 𝑎 .

A string can be approximately modelled by such a constitutive equation
with a large constant 𝑘.
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This constitutive equation is difficult to be used with analytical methods,
but can be amenable to numerical time integration

8.2.4 Pairwise forces

A Hookean or non-Hookean “spring” is modelled as having no mass-
energy or momentum of its own. It is essentially a one-dimensional device
that effects an instantaneous flux of momentum between its two extremities.

We can clearly employ this general idea to model other, wildly different,
physical phenomena:

] Pairwise forces

Consider a phenomenon where these three main conditions are met:

• a transfer of momentum occurs between two separate control
volumes

• this transfer can approximately be treated as instantaneous
• mass-energy and momentum involved in the transfer can be neg-

lected (just like the mass and momentum of a real spring)

Under these conditions we have a constitutive relation of the general
form

𝑭 𝑎𝑠 = 𝑓
(
|𝒓 𝑎 − 𝒓𝑏 |

) 𝒓 𝑎−𝒓𝑏
|𝒓 𝑎−𝒓𝑏 |

where 𝑓 () can in principle be any real function.
We call this a pairwise long-distance force.

Among the most important examples of such a constitutive relation is
Newton’s law of gravitation:

𝑭 𝑎𝑠 = −𝐺 𝑚𝑎 𝑚𝑏

|𝒓 𝑎 − 𝒓𝑏 |2
𝒓 𝑎−𝒓𝑏
|𝒓 𝑎−𝒓𝑏 | (8.5)

Another example is the force of the so-called Lennard-Jones potential:

𝑭 𝑎𝑠 =
𝜖

|𝒓 𝑎 − 𝒓𝑏 |

[
12

(
𝜎

|𝒓 𝑎 − 𝒓𝑏 |

)12
− 6

(
𝜎

|𝒓 𝑎 − 𝒓𝑏 |

)6]
𝒓 𝑎−𝒓𝑏
|𝒓 𝑎−𝒓𝑏 | (8.6)

Which is often used to model the flux of momentum among molecules of
some fluids and solids.

According to general relativity there cannot be an instantaneous transfer
of momentum between two spatially separate control volumes. The mo-
mentum transfer modelled by pairwise forces actually occurs in a lapse
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of time, mediated by matter or electromagnetic field present between the
two control volumes.

8.2.5 Gravity and momentum supply near a planet’s surface

According to general relativity, there can be creation of momentum in
a control volume, that is, there can be a momentum supply 𝑮. This
supply depends on two aspects: our choice of coordinate system, and
the nearby presence of large amounts of energy-mass, momentum, and
of their fluxes. General relativity also makes it clear that it doesn’t make
sense to distinguish between these two aspects in a small control volume:
if we measure a supply of momentum 𝑮 in a very small region, it could
be because of our coordinate system, or because of the nearby presence of
energy-mass or momentum. In fact, by changing our coordinate system
we can always make the supply to be zero in a small region – but in general
not everywhere.

Examples of these kinds of supplies are the ‘gravitational force’, the
‘centrifugal force’, and other forces called ‘inertial’. For example, when
we’re travelling in a car that speeds up or slows down, we feel a horizontal
force pushing us against our seat or pulling us away from it. That force is a

The supply of momentum ap-
pearing in a slowed-down car
can be deadly real

supply of momentum. We feel that supply because our “force-receptors”,
the mechanoreceptors2 in our skin and bones, measure momentum flux with
respect to a coordinate system that is at rest with respect to our body, that is, a
coordinate system where our body has constant coordinates, independent
of time. A person on the street that sees us passing by would say that
there’s no momentum supply (besides the vertical one discussed below),
simply because that person is using a different coordinate system.

When we consider physical phenomena that happen close to a planet’s
surface and involve spatial extensions that are small compared to the
planet’s size, and we choose a coordinate system fixed with the planet’s
ground, then we have special supply of momentum:

] Gravitational force near a planet’s surface

Take a coordinate system (𝑡 , 𝑥, 𝑦, 𝑧) fixed with the ground, with 𝑧

the vertical coordinate with an upward positive direction. A control
volume containing an amount of mass-energy 𝑚 also has a supply of
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downward momentum, the gravitational force, given by

𝑮 = 𝑚 𝒈 , with 𝒈 = −𝑔

0
0
1

 , (8.7)

where 𝑔, the gravitational acceleration, depends on the planet. On
Earth it is approximately

𝑔 ≈ 9.8 N/kg ≡ 9.8 m/s2 . (8.8)

This supply of momentum is approximately constant in time.

8.2.6 Contact forces

Many physical phenomena involve contact between two or more bulks
of matter of different kinds or in different states of motion. Think of a
book resting on a table, or a wooden crate pushed across the floor, or a
layer of vegetable oil floating above water. The fluxes of momentum that
occur through contact surfaces of this kind are called contact forces and
have several peculiar features. In some cases they are mathematically quite
difficult to describe.

We here discuss some particular constitutive relations for contact forces
between rigid bodies, with the following simplifications:

• one of the bodies is at rest in the chosen coordinate system; typically
this ‘body’ is the ground, floor, or the surface of a table;

• the contact surface is horizontal, orthogonal to the force of gravity.
A contact force in this kind of situations typically has both a component

orthogonal to the surface (vertical component), and a component parallel
to the surface (horizontal component), so its direction is oblique with
respect to the surface. The surface-orthogonal component of a contact
force is called normal force, and the surface-parallel component is called
friction.

If we simplify the problem to two dimensions with coordinates (𝑥, 𝑧),
where 𝑥 is horizontal and 𝑧 is vertical, upward, then the 𝑧-component of
the contact force is the normal force, and the 𝑥-component is the friction.
Informally we can write

contact force =

[
contact force𝑥
contact force𝑧

]
=

[
friction

normal force

]
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In many cases, a contact force 𝑭c has a constitutive equation of this
type:

𝑭c =

[
±𝜇 𝐹n
𝐹n

]
(8.9)

where 𝐹n is the normal force and 𝜇 is approximately a constant, called
friction coefficient. The normal force 𝐹n has in turn a special expression.
Let us examine it first.

Normal force The normal components of contact forces are peculiar: their
mathematical expression can be said to be determined by the balance of
momentum, rather than vice versa.

Consider an object such a book lying on a table, possibly pushed
along the table. We observe that the vertical position of the book does not
change: the book doesn’t suddenly sink into the table, nor does it suddenly
levitate upwards. Its vertical velocity component is therefore always
zero: 𝑣𝑧 = 0 m/s . Using Newton’s constitutive relation for momentum
𝑷 = 𝑚𝒗, where 𝑚 is the mass of the book, we see that the vertical
momentum component is also always zero: 𝑃𝑧 = 𝑚𝑣𝑧 = 0 N s . Its time
derivative is therefore also zero.

Now consider the sum of all momentum fluxes through the whole
surface of the book except the contact surface: top surface, side surfaces;
call this sum 𝑭other. Consider also the gravitational supply of momentum
𝑮 = −𝑚 𝑔 [0,−1]. Taking the vertical, 𝑧-component of the balance of
momentum we have

0 N =
d𝑃𝑧

d𝑡 = 𝐹n + 𝐹other,𝑧 + 𝐺𝑧 =⇒ 𝐹n = −𝐹other,𝑧 − 𝐺𝑧

That is, the normal force is equal to minus the sum of all 𝑧-components of
the other momentum fluxes and of the momentum supply:

] Normal force (horizontal case)

In many situations of horizontal contact between two solid bodies,
the normal force 𝐹n is given by

𝐹n = −
(sum of 𝑧-components of momentum fluxes through all other
surfaces and of momentum supply

)
The normal force is therefore never needed to predict the behaviour

of the vertical momentum of a body. Rather, its mathematical expression
comes from the fact that we already know that such momentum is zero and
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constant. But the value of this force is needed to determine the horizontal
component of the contact force: the friction, as formula (8.9) shows.

Friction When we want to push or drag an object such as a table or large
box across the floor, it’s a common experience that exerting a small force
(say, pushing with a finger) won’t move the object. We need to exert a
minimal amount of force to set it into motion; and usually this minimal
force is the larger, the heavier is the object. It’s also a common experience
that once we manage to set the object into motion, the force we need to
exert to keep it moving with a constant speed can be smaller than the force
initially needed to set it into motion.

In both these experiences the total momentum content of the object
is not changing (and it is zero in the first experience). In particular, the
fact that the horizontal component of momentum is not changing, even
if we are providing a horizontal momentum flux, means that there is a
horizontal momentum flux coming from somewhere else. Obviously it is
the horizontal component of the contact force exerted on the object by the
floor: the friction between object and floor.

Our two experiences illustrate that this friction may be different de-
pending on whether the object is at rest or in motion with respect to the
floor. We call it static friction when the object’s velocity is zero, and kinetic
or sliding friction when the object’s velocity is non-zero. Let’s see their
mathematical expressions.

Static friction In our first experience, with the object at rest on the floor,
we noticed that the (zero) horizontal momentum does not change if we
exert any amount of force smaller than a particular threshold. Reasoning as
we did for the normal force, consider again the sum 𝑭other of all momentum
fluxes through the whole surface of the object except the contact surface.
Even if not necessary in this specific case, consider also the gravitational
supply of momentum 𝑮 = −𝑚 𝑔 [0,−1]. Finally, call 𝐹s the static friction.
Taking the horizontal, 𝑥-component of the balance of momentum we find

0 N =
d𝑃𝑥

d𝑡 = 𝐹s + 𝐹other,𝑥 + 𝐺𝑥 =⇒ 𝐹s = −𝐹other,𝑥 − 𝐺𝑥

Note how it is the balance of momentum that determines the amount of
static friction, rather than vice versa, just like it happened for the normal
force.
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We also said that this friction occurs only as long as the total horizontal
force is less that a particular threshold. This threshold turns out to be,
approximately:

• independent of the area of the contact surface
• dependent on the nature of the two materials in contact
• proportional to the normal force exerted on the object

We can express this threshold with the equation

(𝐹s)threshold = 𝜇s |𝐹n | .
] Static friction (horizontal case)

In many situations of horizontal contact between two solid bodies,
the static friction 𝐹s is given by

𝐹s =

{
−𝑭other if |𝑭other | ≤ 𝜇s |𝐹n |
−𝑒𝑭other 𝜇s |𝐹n | if |𝑭other | ≥ 𝜇s |𝐹n |

(8.10)

where

𝑭other :=
(sum of horizontal components of momentum
fluxes through all other surfaces

)
,

𝐹n is the normal force, 𝜇s is called the coefficient of static friction,
and 𝑒𝑭other is a unit vector having the same direction as 𝑭other.

Kinetic friction In our second experience, with the object in motion, we
noticed that the kinetic friction 𝑭k exerted by the floor on the object is,
approximately:

• constant
• independent of the area of the contact surface
• dependent on the nature of the two materials in contact
• proportional to the normal force exerted on the object
• opposite to the velocity 𝒗 of the object

] Kinetic friction (horizontal case)

In many situations of horizontal contact between two solid bodies,
the kinetic friction 𝑭k is given by

𝑭k = −𝑒𝒗 𝜇k |𝐹n | (8.11)

where 𝜇k is the coefficient of kinetic friction, and 𝑒𝒗 is a unit vector
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having the same direction as the velocity 𝒗; the minus sign indicates
that the kinetic friction 𝑭k has opposite direction.
The formula above is valid only as long as the velocity of the object
is not zero.

Note that the coefficients of static and kinetic friction, 𝜇s and 𝜇k, need
not have the same value; in many cases the coefficient of kinetic friction is
smaller than the other.

« Exercise 8.2

1. The normal force has physical dimensions of force, SI units N.
From formulae (8.10) and (8.11) find the physical dimensions and
units of the coefficients of static and kinetic friction.

2. Two persons are pushing a parked car (side figure). The car rests
on a thin layer of ice that formed on the tarmac. Each person is
exerting a horizontal force of 600 N. The car has mass 1200 kg,
and the acceleration of gravity is 9.8 N/kg. The coefficient of static
friction between the wheel’s rubber and ice is 𝜇s = 0.1.

Will the two persons manage to move the car?

3. Consider the following Octave/MATLAB function to calculate
the friction in a numerical simulation in two dimensions with
coordinates (𝑥, 𝑧):

1 function F_fr = friction(Fother_x, Fother_z, v_x, mu_s, mu_k)
2 if v_x == 0 % static friction
3 threshold = mu_s * abs(Fother_z); % max magnitude
4 if abs(Fother_x) <= threshold
5 F_fr = -Fother_x;
6 else
7 F_fr = -sign(Fother_x) * threshold;
8 end
9 else % kinetic friction

10 F_fr = -sign(v_x) * mu_k * abs(Fother_z);
11 end
12 end

Check that this function correctly covers and represents both
formulae (8.10) and (8.11).

sign() is defined as

sign(𝑥) :=


+1 if 𝑥 > 0
0 if 𝑥 = 0
−1 if 𝑥 < 0
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8.3 Examples of applications

8.3.1 Statics

As previously mentioned there are situations in which we must study or
find which momentum fluxes 𝑭 and supply 𝑮 can make the amount of
momentum in a control volume to be zero at all time. This is the domain
of the discipline of statics3. Let’s see a couple of concrete examples.

An object, such as a book, is resting on a table. Which momentum
fluxes occur in such a situation?

z

x

y

Let’s choose a coordinate system (see side picture) and a static control
surface that wraps the object. The total amount of momentum in this
control volume is zero and constant:

𝑷(𝑡) = [0 , 0 , 0] N s (constant).

We also know that any control volume close to Earth’s surface has a
constant supply of momentum, proportional to the mass-energy it contains.
Let’s say that the supply in this case is

𝑮(𝑡) = [0 , 0 ,−2] N (constant).

Then what can the momentum fluxes across different parts of the control surface
be?

A straightforward application of momentum balance in differential
form tells us that the net influx of momentum must be

𝑭(𝑡) = d𝑷(𝑡)
d𝑡

[0,0,0] because constant

− 𝑮(𝑡)
[0,0,−2] N

= [0 , 0 , 2] N (constant).

Note that this is the only piece of information that the balance of mo-
mentum, applied to the chosen closed control surface, can give us. The
influxes through different parts of the control surface could be very differ- ¾ § 4.7 page 72
ent from this value, which is only their total; but the balance of momentum
by itself cannot give us these partial fluxes. We need additional information,
which can only come from constitutive relations.
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In the present case there’s a constitutive relation about the force,
through the whole surface, exerted by air on the book, which says that such
total force is approximately zero:

𝑭air-book(𝑡) ≈ [0 , 0 , 0] N .

The only remaining force must be the one between the book and the table:
a contact force. So the total influx 𝑭(𝑡) that appears in the momentum ¾ § 8.2.6 page 138
balance must be the sum of these two:

𝑭(𝑡) = 𝑭air-book(𝑡) + 𝑭 table-book(𝑡) .

From the last three equations we finally find

𝑭 table-book(𝑡) ≈ [0 , 0 , 2] N (constant).

In other words, there’s a flux of upward momentum from the table to the
book. This is the flux that compensates the downward momentum supply in
the book, keeping the book’s total momentum to zero. This is the normal
force discussed in the previous section.

« Exercise 8.3

Consider two identical books, on top of each other, resting on a
table. Choose two static closed control surfaces of cuboid shape,
each wrapping one book, and having one side in common (where
the two books touch). Assume that the momentum supply in each
control volume is [0 , 0 ,−2] N, constant in time, and make the same
assumptions as before regarding the momentum flux across the
parts of the surfaces in contact with air.

Use the balance of momentum with the two control surfaces to
find:

1. the flux of momentum between the two books

2. the flux of momentum between the bottom book and the table

answer the questions above not just by using intuition, but by explaining
step-by-step how you use the balance law and the given assumptions,
in a mathematical deduction.

z

x

y
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8.3.2 Atmospheric pressure

There is a continuous flux of momentum across any surface that has air
on at least one of its sides. Not only any surface where air is in contact
with objects, but also any imaginary surface, say in the sky over an open
field, with air on both sides. This flux is called atmospheric pressure4 and
has some important constitutive properties:

• It is always compressive, that is, its direction is always orthogonal to ¾ § 4.6.1 page 71
the surface, and its orientation is the same as the crossing orientation.

• Its magnitude, for a surface of 1 m2 at sea level, is approximately
equal to 105 N (corresponding to a weight of about 10 000 kg!).

• Its magnitude slowly decreases with altitude; that is, a 1 m2 surface
1 km above the ground will have an atmospheric pressure (mo-
mentum flux) lower than a 1 m2 surface close to the ground.

In examining momentum fluxes for objects on Earth we often neglect
the presence of air and atmospheric pressure. We did so in the previous
example about a book on a table. The reason is that the total momentum
flux from atmospheric pressure around an object is usually approximately
zero. This happens on account of three factors: (a) there’s always at least a
thin layer of air around an object; even an object lying on a table or on the
ground has a thin layer of air underneath; (b) the atmospheric-pressure
momentum flux is always orthogonal to every small piece of surface; (c) its
magnitude is approximately the same at the same altitude. Together, these
factors lead to a zero total when we sum up all the atmospheric-pressure
fluxes across the different parts of a surface that encloses an object.

Indeed we suddenly feel the heavy presence of atmospheric pressure
when the first or the last of those factors doesn’t hold anymore.

For example you may sometimes have made the mistake of laying a
wide slab of glass, say from a window, upon another, only to find out that
you couldn’t easily lift it up anymore: the two slabs were sort of “stuck”
together. The reason is that the glass surface is so smooth that effectively
there’s no space for a thin layer of air between the two glass slabs. So the
total momentum flux from air to the upper slab does no longer sum up
to zero: there’s only a compressive flux of downward momentum from
air to the slab across its upper surface. As mentioned, for a 1 m2 slab this
flux is equivalent to a weight of 10 000 kg! You can’t lift the upper slab, not
because it’s “stuck” to the lower one, but because it suddenly has a net
force of 10 tonnes on top (which presses the two glass slabs together even
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more, and therefore drives out more air between them). The only thing
you can do is to try to let air again between the two slabs, for instance
moving them to a vertical position, so that there will again be atmospheric
pressure on both sides of each slab.

The same phenomenon occurs, in a more useful way, with a suction cup:
the atmospheric pressure on its two sides is very different, and therefore
it receives a net influx of momentum pointing towards the wall. This, in
turn, leads to an influx of upward momentum owing to friction (which
we’ll discuss later), which compensate for the momentum supply from
gravity. Thus the cup can stay in place without falling and even support
some object.

In some cases the magnitude of the atmospheric pressure is different
because of altitude, and this can be exploited for flying, as we discuss
below. But in order to do that, try to solve this exercise first:

« Exercise 8.4

In this exercise we apply a reasoning very similar to that of Exer-
cise 8.3.

Consider a body of air at rest. Imagine a closed control surface
which encloses some of this air. This is analogous to the example ¾ § 8.3.1 page 143
with the book on the table; now instead of a book we simply have a
volume of air, and instead of a table we have air also underneath the
volume. For definiteness let’s say that the volume is a cuboid with
small height ℎ and horizontal base area 𝐴, so the volume is ℎ 𝐴

Air is matter, and therefore this control volume has a constant
supply of downward momentum owing to gravity. On Earth’s surface
we can say (this is a constitutive relation) that a volume ℎ 𝐴 of air
has a momentum supply with 𝑧-component approximately equal to

𝐺𝑧 = −ℎ · 𝐴 · 11.8 N/m3 .

Assume that the momentum flux on the lateral surface of the
volume is zero.

1. Apply the momentum balance, and extensivity of momentum,
to find the difference in magnitude between the momentum
influx through the bottom of the cuboid and the momentum influx
through the top of the cuboid.
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2. Pressure is defined as momentum flux per unit area. How much is
the pressure difference between the bottom and top of the cuboid
of air?

3. Try to generalize and write an approximate formula of how pres-
sure changes with altitude.
- The results obtained in this exercise are approximate, because the supply

of momentum 𝑮 actually changes with altitude as well, and depends on other
quantities such as temperature. But they do have the correct order of magnitude.

8.3.3 Airborne flight

Airborne flight is a conceptually extremely simple application of mo-
mentum balance. In terms of momentum, the objective of flight is to
compensate or over-compensate the constant downward-momentum sup-
ply 𝑮 that an object, not touching any other solid object, receives because
of gravity. One way to compensate this supply is by creating a net influx of
upward-momentum, or equivalently a net efflux of downward-momentum,
between the object and the air or atmosphere that surrounds it. This is
airborne flight.

The ways in which such a momentum flux between object and air is
realized can be very different:

Buoyancy In the preceding section we saw that the magnitude of the
compressive momentum flux – atmospheric pressure – between air
and any object decreases with height. So if the object is large enough
compared to its weight, it automatically receives a net influx of
upward momentum that can balance its weight. A calculation shows
that this net upward force is proportional to the volume of the object,
the mass per unit volume of the surrounding air (or atmosphere
or other fluid), and the gravitational acceleration; this formula is
called ‘Archimedes’s principle’5. Flight by buoyancy can therefore
be achieved by making the object large, light, or both. This is the
principle upon which helium-filled party balloons, hot-air balloons,
airships, and also submarines, are based.

Airship Airlander from Hy-
brid Air Vehicles6

Soaring Air is not always at rest (with respect to the Earth’s surface). Owing
to energy flow in the atmosphere and Earth’s rotation, bodies of air –
air currents – can be moving in different directions, including upward.
An upward-moving body of air contains a net upward momentum. If
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an object stops the vertical motion of this air, for example deflecting
it horizontally, then by the balance of momentum there must be a
flux of upward momentum from the body of air to the object. This
upward momentum can compensate the gravity supply of downward
momentum, and therefore the object can float or rise. This mechanism
is called soaring or gliding7 and is used by birds and gliders; it’s also
the mechanism that lifts a light object like a piece of paper or a feather. A hang-glider (image from

Jæren Luftsportsklubb8)

Propelled flight We can try to create a flow of downward momentum from
an object to the surrounding air, even if air is initially at rest. As a
result, a body of air surrounding the object will acquire a net, partially
downward movement. By the symmetry of fluxes this also means ¾ § 4.3.1 page 59
that momentum with an upward component flows from the air to
the object, and this component can compensate the object’s weight.
This is achieved by birds by flapping their wings, and by aeroplanes
and helicopters through horizontally moving wings or blades.

Sections of two kinds of
wings for supersonic flight
(Leishman 2024 § 26)

£ It’s not the difference in air pressure

Some texts say that wings can sustain an aeroplane because their cross-
section has an asymmetric shape, slightly more bulged upward than
downward, leading to a difference in the air pressure between the top and
bottom of the wing. This is not true. In fact, aeroplanes with symmetric
wings fly as well.

the popular theory of lift generation found in many textbooks is
completely wrong! The upper surface doesn’t have to be longer
than the lower surface to generate lift. The lift occurs because the
airfoil turns the flow of air and both the lower and upper surface
contribute to the turning.

Wing geometry, NASA Glenn Research Center9

8.3.4 Rockets

The flight mechanisms discussed in the previous section rely on the
presence of air or some kind of atmosphere around the object, with which
a momentum flux can occur. This is not possible in outer space, and such
flux may not be enough to lift an object even if air is surrounding it.

Another way of producing an influx of upward momentum is to release
matter having downward momentum. As we saw in an example with ¾ § 5.5.4 page 94
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a falling block of ice, if through a surface there’s a flux of matter, then
there’s also a flux of momentum. So if an object manages to realize a strong
enough flux of matter through a surface at its bottom, the object itself
will experience an influx of upward momentum, which can overcome
the object’s weight. This is the momentum-flux mechanism employed by
rockets.

Obviously the amount of matter in the control volume defining the
object will be decreasing, since there’s also a negative influx of matter, and
the law of conservation of matter must hold as well.

8.3.5 Statics again: cable cars

Scenic Skyway10 cable car, Aus-
tralia

Consider a cable car suspended on a horizontal cable, and not moving.
Which momentum fluxes occur in this situation?

This problem has some similarities with the previous one about the
book on a table. Choose a control volume containing the cable car.

• The total momentum in this volume is constantly zero, because the
cable car isn’t moving

• There’s a constant momentum supply because of gravity; let’s say
that in this case it’s

𝑮(𝑡) = [0 , 0 ,−8 × 104] N (constant)

• By the balance of momentum, there must then be an influx of upward-
momentum of the same magnitude as the supply:

𝑭(𝑡) = d𝑷(𝑡)
d𝑡

[0,0,0] because constant

− 𝑮(𝑡)
[0,0,−8×104] N

= [0 , 0 , 8 × 104] N (constant).

• Also in this case the influx through the parts of the control surface in
contact with air is practically zero:

𝑭air-car(𝑡) ≈ [0 , 0 , 0] N .

All the influx of momentum must therefore come through the cable.
But there are some interesting aspects on how this happens. In this case
it’s interesting to choose a static closed control surface that wraps the car
and part of the cables, “cutting” the cables in imagination, as illustrated
by the red polygon in the picture below:
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This picture also depict, as zoom-ins, the two parts of the imaginary control
surface that “cut” the cable (for simplicity imagine that there’s only one
cable). The total influx 𝑭 must happen through these two small regions
of the surface, in the cable. An interesting question is: How much is the
momentum influx through each one?. Call these two momentum influxes
𝑭 left through surface cutting the cable on the left; and 𝑭right through surface
cutting the cable on the right. Since all these fluxes are constant in time,
let’s drop the argument ‘(𝑡)’; and let’s drop the 𝑦-components, which are
all zero.

We know that
𝑭 left + 𝑭right = 𝑭 =

[ 0
8×104

]
N

from this equation we find

(𝑭 left)𝑥 = −(𝑭right)𝑥 (𝑭 left)𝑧 = 8 × 104 N − (𝑭right)𝑧
where ‘(. . . )𝑥’ denotes the 𝑥-component, and similarly for the 𝑧-component.
But this doesn’t tell us how much 𝑭 left and 𝑭right are individually. For
example we could have

𝑭 left
?
=

[ 5
−2×104

]
N 𝑭right

?
=

[ −5
20×104

]
N

and the total influx would be the correct one.
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We shall see later that the balance of angular momentum applied to
this problem leads to a further constraint: (𝑭 left)𝑧 = (𝑭right)𝑧 . So we can
conclude that

(𝑭 left)𝑧 = (𝑭right)𝑧 = 4 × 104 N

that is, each half of the cable is “taking half of the weight”, as intuitively
expected.

The last part of our mystery, about the 𝑥-components, can be solved
thanks to an additional constitutive property:

] Momentum flux allowed in cables and ropes

A cable, rope, or similar object can (approximately) only transmit
tensile momentum flux, aligned along its axis. ¾ § 4.6.2 page 71

Pictorially this means that only the momentum flux represented in the left
picture below (tension) is physically possible:

the other three (from left to right: shear, pressure, mixed) are not.
We therefore need to know the directions of the axes of the two parts of

the cable. Let’s suppose that each part has an inclination of 0.12 rad ≈ 6.9◦,
but in opposite directions. This must then also be the angle between the
influx 𝑭right and its horizontal component (𝑭right)𝑥 , as in this picture (the
angle has been exaggerated for clarity):
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From trigonometry we find

(𝑭right)𝑥 = (𝑭right)𝑧/tan(0.12 rad) = 4 × 104 N/0.12 ≈ 3.3 × 105 N

and therefore (𝑭 left)𝑥 ≈ −3.3 × 105 N:

𝑭 left ≈
[
−3.3×105

4×104

]
N 𝑭right ≈

[
3.3×105

4×104

]
N

The magnitude of these tensions is also approximately |𝑭 left | = |𝑭right | ≈
3 × 105 N or an equivalent weight of 35 tonnes (this result seems in the
correct order of magnitude, comparing with the data in Brownjohn 1998).

In solving the cable-car problem above we used the balance of mo-
mentum, but note and keep in mind how that balance alone wasn’t enough.
We also had to use:

• the balance of angular momentum
• constitutive relations regarding:

– the momentum supply
– the amount of momentum flux between air and the cable car
– the kind of momentum flux allowed in a cable

8.3.6 Momentum fluxes in a gas

Imagine a rigid box at rest containing an amount of gas, and vacuum
outside the box. Let gravity be negligible. It is common knowledge that if
we open one side of the box, the gas within gets out. The gas’s behaviour is
to be contrasted with that of a solid: if the box contained, say, a brick, then
the brick would simply stay where it is upon opening one side of the box.

This peculiar behaviour of gases gives us an idea of what kind of
momentum fluxes must occur at the boundaries of a control volume
containing some gas.

« Exercise 8.5

Before continuing to read, try to figure out by yourself how the
momentum fluxes in a gas should be. Formulate some hypotheses at
least. Remember that you must first choose some control surfaces
first. For instance, think of what kind of momentum flux there could
be through control surfaces like the red dashed lines in the side
illustration: (a) at the opened side; (b) in between the opened side
and the middle of the box, parallel to opened side.
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Let us try to infer what are the momentum fluxes through the two
horizontal control surfaces depicted in the previous illustration.

box opened box closed

• The portion of gas between the two surfaces gets out as soon as we
open the upper side of the box. This portion of gas must therefore
be receiving outward-oriented momentum. This momentum cannot
come from the gravitational momentum supply, because the latter is
oriented downward. It must therefore be the result of a momentum
flux. This flux cannot be through the surface separating the gas from
the vacuum, and it seems implausible that it is a flux through the
contact surface with the box. Intuitively we understand that it is a
flux coming from the gas further within the box (side picture, left).

• As long as the upper side of the box is closed, however, portion
of gas between the two surfaces stays at rest. The flux of outward-
oriented momentum coming from the gas further within the box must
therefore be compensated by a flux of inward-oriented momentum
that comes from the closed side of the box (side picture, right).

Repeating this kind of reasoning with horizontal control surfaces
further within the box, and then with vertical control surfaces, we arrive
at the following conclusion: through any small control surface delimiting
some gas at rest there is an influx of inward-oriented momentum. The total
momentum within the control volume doesn’t change because the influxes
from opposite parts of the whole closed control surface cancel each other.

] Internal pressure

The compressive momentum flux that occurs through any control
surface that we may choose within a gas is called the internal pressure
of the gas. More precisely, the internal pressure is the flux divided
by the area through which it occurs.

In Chapter 9 we shall discuss a constitutive relation for the internal pressure
of particular kinds of gas.

If we consider a collection of parallel control surfaces within a gas, we
see that there is a flux of momentum across all of them; this momentum has
the same orientation as the chosen crossing direction. In the side illustration,
for instance, if we cross the horizontal control surfaces (red dashed lines)
from bottom to top, we’ll measure a flux of upward momentum. By flux
symmetry, if we choose the opposite crossing direction, from top to bottom,
then we’ll measure a flux of downward momentum.
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From a molecular point of view, this momentum flux mainly comes
from the momentum transported by the molecules that make up the gas.
Some molecules are moving with an upward velocity, and therefore each of
them has an upward momentum; this upward momentum travels upward,
transported by the molecule. Other molecules are moving with a downward
velocity, and therefore each of them has a downward momentum, which
is also transported downward.

At the surface where the gas is in contact with its containing box, the
momentum gets transferred to the box. An interesting question then arises.
When the box is also at rest, the momentum contained in each portion of
it is zero and remains zero. Where does the momentum that it receives
from the gas go? The answer is that an opposite circulation of momentum
takes places through the walls of the box: the momentum that one side of
the box receives from the gas is transported to the opposite side, where it
is given back to the gas. By the symmetry of fluxes, this circulation can
also be visualized in the opposite direction. The flux of momentum along
the walls of the box is therefore tensile, or partially tensile and partially
shearing. The side picture gives a qualitative illustration of the momentum
fluxes that occur through various control surfaces at the corner of a box
that contains an amount of gas and is surrounded by a vacuum. From a
molecular point of view, the flux of momentum through the box occurs
not because of transport by molecules, but because of transport by the
electromagnetic field that exists with the box’s molecules.

8.3.7 Hookean spring and harmonic oscillator

The physical system composed of two bodies of matter connected by a
spring, with the spring modelled by the Hookean constitutive properties, ¾ § 8.2.2 page 133
is one of particular importance in physics, for several reasons. Its equations
can be solved analytically and describe a harmonic oscillator11, with a beha-
viour that can be predicted without numerical time-integration methods.
The mathematical form of its equations can also be applied to many other
physical phenomena involving quantities other than momentum. Hooke’s
law can sometimes be used as a linear approximation in more complicated
systems. And if we consider particular additional forces applied to one or
both of the two bodies, we can study simple examples of the important
phenomena of resonance12 and damping13.

The Hookean spring and the harmonic oscillator are therefore discussed
in detail in essentially all physics textbooks and in specialized treatises.
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For this reason I won’t discuss them here. I recommend that you read the
chapter on the harmonic oscillator14 and that on resonance15 in Feynman’s
Lectures, for example.

In these notes, instead, I’d like to discuss more in detail the role of the
balance of momentum and of constitutive relations in this system, as these
aspects are often quickly glossed over in other texts.

« Exercise 8.6

Before continuing, try to do on your own the analysis of two small
bodies connected by a Hookean spring, as previously defined. Con-
sider in particular:

• How would you set up a coordinate system and closed control
surfaces to describe this physical phenomenon? how many control
volumes?

• How many applications of the balance of momentum would you
need to make?

• What would be the volume contents, fluxes, and supplies in these
balances?

• What would be the relevant constitutive relations?

• What would be the initial data and the boundary conditions? ¾ § 6.3.5 page 113

We consider two bodies of matter, call them 𝑎 and 𝑏, of small extension
compared to the distance between them. We attach them at the two ends of
a Hookean spring, which for simplicity here we take as having a negligible
natural length; that is, 𝑙n ≈ 0 m. We choose a coordinate system at rest with
the Earth’s surface; let’s denote it (𝑦, 𝑧), with 𝑧 pointing upward. The only
momentum supply, if considered, is given by the constitutive equation for
gravitational force.

In terms of control surfaces, we have three of them: one tightly en-
veloping body 𝑎, one body 𝑏, and a third enveloping the spring. Let us
analyse each one in turn, writing down its relevant balances. Note that all
quantities below, except the masses and the elastic constant 𝑘, depend on
the time 𝑡.

Body 𝑎: The control volume for body 𝑎 is small and can be characterized
simply by its position vector 𝒓 𝑎 . The mass-energy in this control
volume is 𝑚𝑎 .
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By construction, conservation of matter automatically holds for this ¾ § 7.3.1 page 126
control volume. It remains, hidden, in the relation between the
position and velocity of the control volume: 𝒗𝑎(𝑡) = d𝒓 𝑎(𝑡)/d𝑡.
This control volume contains an amount of momentum 𝑷𝑎 = 𝑚𝑎 𝒗𝑎 ,
according to the Newtonian constitutive equation. ¾ § 8.2.1 page 133

We assume that the only momentum flux across the closed control
surface occurs on the small portion of surface in common with the
control surface for the spring (see thick red lines in the side picture
below). Across that small surface there is an influx 𝑭 𝑎𝑠 . We are using
this notation for the fluxes: ‘𝑭 𝑎𝑠 ’ is the influx in body 𝑎 coming from
the spring; analogously for 𝑭𝑏𝑠 and body 𝑏.
If we consider gravity effects, this control volume also has a constant
momentum supply 𝑮𝑎 = −𝑚𝑎 𝑔 [0, 1], according to the constitutive ¾ § 8.2.5 page 137
equation for gravitational force.
For this control volume we have therefore the following momentum
balance and constitutive relations:

momentum balance
d𝑷𝑎(𝑡)

d𝑡 = 𝑭 𝑎𝑠(𝑡) + 𝑮𝑎(𝑡)

velocity
d𝒓 𝑎(𝑡)

d𝑡 = 𝒗𝑎(𝑡)

const. relation 𝑷𝑎(𝑡) = 𝑚𝑎𝒗𝑎(𝑡)
const. relation 𝑮𝑎(𝑡) = −𝑚𝑎 𝑔 [0, 1]

Body 𝑏: An analogous analysis can be made for the control volume of
body 𝑏. It has position 𝒓𝑏 , total mass-energy 𝑚𝑏 , total momentum
𝑷𝑏 = 𝑚𝑏 𝒗𝑏 .

Schematics of the analysis.
The control volumes are in-
dicated by dashed yellow
lines. The surfaces in com-
mon between spring and the
two bodies are depicted by
two thick red lines. The fluxes
𝑭 𝑎𝑠 , 𝑭𝑏𝑠 happen across these
surfaces, but their vectors are
placed on the side in the illus-
tration. The vectors represent-
ing the velocities 𝒗𝑎 , 𝒗𝑏 , and
the momentum supplies 𝑮𝑎 ,
𝑮𝑏 are omitted for clarity.

The only momentum flux occurs across the portion of control surface
in common with that of the spring; there we have an influx 𝑭𝑏𝑠 .
For this control volume we have the following momentum balance
and constitutive relations:

momentum balance
d𝑷𝑏(𝑡)

d𝑡 = 𝑭𝑏𝑠(𝑡) + 𝑮𝑏(𝑡)

velocity
d𝒓𝑏(𝑡)

d𝑡 = 𝒗𝑏(𝑡)

const. relation 𝑷𝑏(𝑡) = 𝑚𝑏𝒗𝑏(𝑡)
const. relation 𝑮𝑏(𝑡) = −𝑚𝑏 𝑔 [0, 1]
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Spring: The control volume for the spring, according to the simplifications
typical of Hookean springs, has two negligible dimensions and can be
represented by a long, narrow tube extending between the extremities
at 𝒓 𝑎 and 𝒓𝑏 . The two surfaces at these extremities are in common
with two surfaces of the control volumes for the bodies 𝑎 and 𝑏, one
surface each. The amount of matter and matter flux in the control
volume for the spring are considered to be zero, again according to
the simplifications for Hookean springs. The same is true for the total
momentum 𝑷 and supply 𝑮, also zero.

At the surface where the spring is in contact with body 𝑎 (see side
picture above), there is an influx of momentum for the spring, equal
to −𝑭 𝑎𝑠 . The minus sign comes from the symmetry of fluxes, because ¾ § 4.3.1 page 59
𝑭 𝑎𝑠 is the influx for body 𝑎.

Analogously, at the surface where the spring is in contact with body
𝑏, there is a momentum influx for the spring equal to −𝑭𝑏𝑠 .

The total momentum influx for the spring is therefore 𝑭 = −𝑭 𝑎𝑠 − 𝑭𝑏𝑠

by extensivity.

The Hookean constitutive relation (8.3) says that the momentum
efflux across one surface, say the one in contact with body 𝑎, must be

𝑭 𝑎𝑠 = −𝑘 (𝒓 𝑎 − 𝒓𝑏)

because 𝒓 𝑎 − 𝒓𝑏 is the main length of the control volume for the spring.

The momentum balance and constitutive relations for the control
volume of the spring are therefore:

momentum balance
d𝑷(𝑡)

d𝑡 = 𝑭(𝑡) + 𝑮(𝑡)

total influx by extensivity 𝑭(𝑡) = −𝑭 𝑎𝑠(𝑡) − 𝑭𝑏𝑠(𝑡)
assumption for spring 𝑷(𝑡) = 0

assumption for spring 𝑮(𝑡) = 0

Hooke const. relation 𝑭 𝑎𝑠(𝑡) = −𝑘 [𝒓 𝑎(𝑡) − 𝒓𝑏(𝑡)]

Something peculiar happens in the case of the spring: the momentum
balance for the spring reduces to a very simple equation:

0 = 𝑭 = −𝑭 𝑎𝑠 − 𝑭𝑏𝑠
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We thus find that the effluxes at the extremities of the spring must be
opposite:

𝑭 𝑎𝑠 = −𝑭𝑏𝑠

this result is therefore a consequence of momentum balance, not of
the ‘principle of action and reaction’.

This is of course an approximation. In a more detailed description of
this physical system, the momentum balance for the spring would
tell us how momentum flows from one end to the other of the spring,
over time. In our simplified system we are essentially assuming that
this flow is instantaneous. This is why we end up with an equation
relating two momentum fluxes, 𝑭 𝑎𝑠 and 𝑭𝑏𝑠 , at the same time.

The setup for the description of this physical system is thus complete.
This setup was probably intuitively clear, but I’d like you to stop for a
moment and note all the subtle steps and details that it involves. We often
cannot reason intuitively in the analysis of more complex physical systems,
and need to spell out their description step by step, to avoid neglecting
important details. It is therefore a good exercise to do this kind of analysis
for a simpler system, as we just did.

In this analysis, note how some control volumes have parts of their
control surfaces in common. These common surfaces are important because
they connect the fluxes of momentum and other quantities between the
various control volumes. In modelling extended solids and fluids we often
use a grid of control volumes, so that the surface of one control volume
has regions in common with the surrounding control volumes.

The set of equations above is usually solved analytically by introducing
two alternative vector variables:

𝒖 := 𝑚𝑎 𝒓 𝑎 + 𝑚𝑏 𝒓𝑏
𝑚𝑎 + 𝑚𝑏

𝒘 := 𝒓 𝑎 − 𝒓𝑏

the first, 𝒖, is called the centre of mass of this physical system. In terms

t

u
x

t

w
x

Every component of 𝒖(𝑡) is
a linear function of time,
and every component of
𝒘(𝑡) has a harmonic depend-
ence on time with period

1
2π

√
𝑚𝑎 𝑚𝑏

𝑘 (𝑚𝑎+𝑚𝑏 ) . The slopes and
intercepts of 𝒖(𝑡) and the
amplitudes and phases of
𝒘(𝑡) depend on the initial
conditions.

of these variables the whole set of equations above reduces to these two
linear differential equations with constant coefficients (each equation is a
set of three, one for each component):

d2𝒖(𝑡)
d𝑡2 = 0 d2𝒘(𝑡)

d𝑡2 + 𝑘
𝑚𝑎 + 𝑚𝑏

𝑚𝑎 𝑚𝑏
𝒘(𝑡) = 0

that can be solved analytically.
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« Exercise 8.7

Try to refresh your knowledge of linear differential equations with
constant coefficients, and find the general solution for the equations
above.

Then express this solution in terms of the positions 𝒓 𝑎 and 𝒓𝑏 .

8.3.8 Many-body systems

We can obviously consider more than two objects connected by a number of
springs or other pairwise forces. The analytical description of such a system ¾ § 8.2.4 page 136
becomes quickly intractable. For numerical time integration, however, we
only need to add additional lines of code to compute the additional
momentum fluxes and timestep the momentum for the individual bodies;
this can be done by appropriate for-loops for the pairwise forces and for
the momenta.

Snapshot of a molecular-
dynamics simulation from In-
teractive Molecular Dynamics16

This way we can numerically simulate complex physical phenomena
like a planetary system, or a collection of molecules – thus entering the field
of molecular-dynamics simulation17. You can see an example of the latter
kind of simulation, using the Lennard-Jones pairwise force of formula (8.6),
at the Interactive Molecular Dynamics webpage18.

8.4 Choice of control surfaces and volumes

In the preceding examples with the two bodies & spring, we chose to
describe the system by means of three closed control surfaces. We did so
because we were interested in the detailed motion of the two bodies with
respect to each other, and we were not interested in what was happening
within each body.

In a real physical realization, for instance with two tennis balls connec-
ted by a spring, each tennis ball would slightly deform upon receiving
momentum flux from the spring. If we were interested in such deforma-
tions, we would need to describe each tennis ball by a set of control surfaces
and volumes, small enough so as to keep a detailed track of the different
momentum contents and momentum fluxes within the ball. This detailed
description would also require knowledge of constitutive relations for the
ball’s material. Analogously for the spring, if we wished to describe it as a
real spring made of different, deforming parts.
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Yet in other situations we may instead not even be interested in the
relative motion of the tennis balls. For instance, a particular set of initial
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values 𝒓 𝑎(𝑡0), 𝒓𝑏(𝑡0), 𝒗𝑎(𝑡0), 𝒗𝑏(𝑡0) for the tennis balls leads to the trajectories
shown in the plot on the side. The distance between the two tennis balls
cyclically changes between zero and a maximum value. If we imagine to
zoom out from this plot, the positions of the two masses become almost
indistinguishable, that is, 𝒓 𝑎 ≈ 𝒓𝑏 ; and we see that the system as a whole
is essentially moving on a straight line. A zoomed-out plot of 𝒓 𝑎(𝑡) or 𝒓𝑏(𝑡)
against time 𝑡 would also show that its velocity is essentially constant.

In such a situation we would have chosen just one closed control surface
containing the two bodies and the spring. By the extensivity property, the ¾ § 3.1 page 33
total mass-energy 𝑚tot, momentum content 𝑷tot, momentum flux 𝑭 tot, and
momentum supply 𝑮tot for this closed control surface can be obtained by
adding up those of the three original control surfaces, spring+𝑎+𝑏:

𝑚tot = 0 + 𝑚𝑎 + 𝑚𝑏 𝑷tot = 0 + 𝑷𝑎 + 𝑷𝑏

𝑭 tot = (−𝑭 𝑎𝑠 − 𝑭𝑏𝑠) + 𝑭 𝑎𝑠 + 𝑭𝑏𝑠 𝑮tot = 0 + 𝑮𝑎 + 𝑮𝑏

Note that the total momentum influx is zero: 𝑭 tot = 0 . Indeed the only
non-zero momentum fluxes occur at the surfaces between each body and
the spring – but in the present description these two surfaces are not
considered (just like the momentum fluxes that in reality occur within each
body were not considered when we chose three control volumes).

Momentum balance also applies to the total control volume:

𝑷tot(𝑡1) = 𝑷tot(𝑡0) +
∫ 𝑡1

𝑡0

𝑭 tot(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑮tot(𝑡)d𝑡

If the total momentum influx and supplies are zero, then we find 𝑷tot(𝑡1) =
𝑷tot(𝑡0) , which explains why we found that the velocity for the whole

system could be considered as constant.

8.5 Numerical time integration: a strategy

The physical system of two masses connected by a Hookean spring can
be solved, and its behaviour predicted, analytically. But finding analytical
solutions becomes more difficult or even impossible as soon as we consider
non-Hookean springs and more general constitutive relations, or more ¾ § 8.2.3 page 135
masses. We then resort to numerical time-integration methods to predict
the behaviour of such systems.
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The essential idea of such numerical methods was introduced in an ¾ § 6.3 page 108
earlier chapter. Let us now apply it to the masses-and-spring system. If
we write an algorithm that numerically simulates a Hookean spring, it is
then very easy to generalize it to a non-Hookean spring and to even more
complex constitutive relations.

We wrote our first time-integration algorithm by proceeding intuitively, ¾ § 6.3.8 page 117
without following any particular scheme. Our present physical system
involves more quantities and more constitutive equations. It is therefore
convenient to find a more systematic way to build a simulation algorithm.
Let’s see the main steps using the present physical system as an example.

In trying to reach a systematic way we shall also realize again the
importance of the universal balance laws.

8.5.1 Overview of the relevant equations

First we must have a clear list of the balance laws and constitutive relations
that apply to the physical system. In our case they are ¾ § 8.3.7 page 154

d𝑷𝑎(𝑡)
d𝑡 = 𝑭 𝑎𝑠(𝑡) + 𝑮𝑎(𝑡) momentum balance for body 𝑎

d𝑷𝑏(𝑡)
d𝑡 = 𝑭𝑏𝑠(𝑡) + 𝑮𝑏(𝑡) momentum balance for body 𝑏

d𝒓 𝑎(𝑡)
d𝑡 = 𝒗𝑎(𝑡) velocity of body 𝑎

d𝒓𝑏(𝑡)
d𝑡 = 𝒗𝑏(𝑡) velocity of body 𝑏

𝑭𝑏𝑠(𝑡) = −𝑭 𝑎𝑠(𝑡) momentum balance for spring

𝑷𝑎(𝑡) = 𝑚𝑎𝒗𝑎(𝑡) Newtonian momentum body 𝑎

𝑷𝑏(𝑡) = 𝑚𝑏𝒗𝑏(𝑡) Newtonian momentum body 𝑏

𝑮𝑎(𝑡) = −𝑚𝑎 𝑔 [0, 1] momentum supply body 𝑎

𝑮𝑏(𝑡) = −𝑚𝑏 𝑔 [0, 1] momentum supply body 𝑏

𝑭 𝑎𝑠(𝑡) = −𝑘 [𝒓 𝑎(𝑡) − 𝒓𝑏(𝑡)] Hooke’s law

where each vector equation represents two equations: one for component
𝑦, one for 𝑧. We could have written the balance laws in integral, rather
than differential, form. The latter form is simply more compact. Recall the
peculiarity about the momentum balance for the spring: since the spring
is assumed to always have zero momentum, the balance simplified to the
equation 𝑭𝑏𝑠(𝑡) = −𝑭 𝑎𝑠(𝑡) , where no time derivative appear anymore.
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In order to do numerical time integration, we approximate the balance
laws and the velocities with finite-difference approximations. Our set of ¾ § 6.3.2 page 110
equations is therefore rewritten as follows:

𝑷𝑎(𝑡 + Δ𝑡) ≈ 𝑷𝑎(𝑡) + [𝑭 𝑎𝑠(𝑡) + 𝑮𝑎(𝑡)]Δ𝑡 momentum balance for body 𝑎

𝑷𝑏(𝑡 + Δ𝑡) ≈ 𝑷𝑏(𝑡) + [𝑭𝑏𝑠(𝑡) + 𝑮𝑏(𝑡)]Δ𝑡 momentum balance for body 𝑏

𝒓 𝑎(𝑡 + Δ𝑡) ≈ 𝒓 𝑎(𝑡) + 𝒗𝑎(𝑡)Δ𝑡 velocity of body 𝑎

𝒓𝑏(𝑡 + Δ𝑡) ≈ 𝒓𝑏(𝑡) + 𝒗𝑏(𝑡)Δ𝑡 velocity of body 𝑏

𝑭𝑏𝑠(𝑡) = −𝑭 𝑎𝑠(𝑡) momentum balance for spring

𝑷𝑎(𝑡) = 𝑚𝑎𝒗𝑎(𝑡) Newtonian momentum body 𝑎

𝑷𝑏(𝑡) = 𝑚𝑏𝒗𝑏(𝑡) Newtonian momentum body 𝑏

𝑮𝑎(𝑡) = −𝑚𝑎 𝑔 [0, 1] momentumsupply body 𝑎

𝑮𝑏(𝑡) = −𝑚𝑏 𝑔 [0, 1] momentum supply body 𝑏

𝑭 𝑎𝑠(𝑡) = −𝑘 [𝒓 𝑎(𝑡) − 𝒓𝑏(𝑡)] Hooke’s law

This is now our starting point. Let’s see a reasoned set of steps to write
a script that implements these equations.

8.5.2 A strategy for writing a numerical time-integration
algorithm

Our strategy can be divided into six systematic steps, which we reason
out now. The script can be written along, as we follow them. After each
step, take a look at the example script of Table 8.1 on page 167, and locate
the lines where that step was implemented.

0. Find any constants appearing in the equations. Constitutive relations
typically contain constant quantities, that is, quantities that don’t change
in time. These constants must be known in order to simulate the system.
They are therefore declared at the beginning of the script. In our case the
constants are the masses 𝑚𝑎 , 𝑚𝑏 , the gravitational acceleration 𝑔, and the
elastic constant 𝑘. Other examples could be fixed lengths, areas, volumes.

The discrete timestep Δ𝑡 is also a constant in our scripts. In more
advanced techniques, however, the timestep may be adaptive, that is, it may
change at every iteration, depending on particular conditions. This can
lead to smaller numerical errors.
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Volume contents, fluxes, and supplies usually depend on time; but in
special situations some of them may turn out to be constant as well. In
such situations it is computationally efficient to declare them before the
time-stepping loop, rather than computing them anew (obtaining always
the same value) at each time step. In our case we see that the gravity
supplies of the two bodies, 𝑮𝑎(𝑡) = −𝑚𝑎 𝑔 [0, 1] and 𝑮𝑏(𝑡) = −𝑚𝑏 𝑔 [0, 1]
are constant, because the masses, the gravitational acceleration, and the
unit vector [0, 1] are constant. 4Ð page 167

1. Find which equations drive the system forward in time. Some equations
must tell us the values of some quantities at the next time point 𝑡 + Δ𝑡,
given quantities at the present time point 𝑡. They must therefore be written
in the core of the time-stepping loop, together with the update of the
time variable 𝑡.

These driving equations easy to identify: ‘𝑡 + Δ𝑡’ appears in them. In
our case they are the balances for the momenta 𝑷𝑎 , 𝑷𝑏 , and the velocity
equations for the two bodies, having two coordinate components each.

The fact that the forward-driving equations are fundamental balances
is not a coincidence: as mentioned several times already, the universal
balances are important because they relate later times to earlier times. This fact
becomes especially evident when we write a simulation algorithm.

In our case there’s also one more balance, the momentum balance for
the spring, but owing to the special assumptions about the spring (being
massless), it simplifies to a same-time equation. 4Ð page 167

2. Choose a state for the physical system. The driving equations in the
core lines of the loop calculate later quantities from a particular set of
present quantities. We must therefore make sure that the values of these
quantities are defined before the core lines, and that they are known before
the time-stepping loop begins as well. In our case we see that we need 8
quantities, underlined below, with two components each, for a total of 16
numbers:

𝑷𝑎(𝑡 + Δ𝑡) ≈ 𝑷𝑎(𝑡) +[𝑭 𝑎𝑠(𝑡) +𝑮𝑎(𝑡)]Δ𝑡

𝑷𝑏(𝑡 + Δ𝑡) ≈ 𝑷𝑏(𝑡) +[𝑭𝑏𝑠(𝑡) +𝑮𝑏(𝑡)]Δ𝑡

𝒓 𝑎(𝑡 + Δ𝑡) ≈ 𝒓 𝑎(𝑡) + 𝒗𝑎(𝑡) Δ𝑡

𝒓𝑏(𝑡 + Δ𝑡) ≈ 𝒓𝑏(𝑡) + 𝒗𝑏(𝑡) Δ𝑡
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The supplies 𝑮𝑎 , 𝑮𝑏 are constant and already declared, so we don’t need
to worry about them.

The eight quantities above are not all independent, thanks to con-
stitutive relations that relate some of them. For instance, if we assign the
velocity 𝒗𝑎 , then the momentum 𝑷𝑎 is determined by the constitutive
relation 𝑷𝑎 = 𝑚𝑎𝒗𝑎 ; and if we assign the positions 𝒓 𝑎 , 𝒓𝑏 , then the force 𝑭 𝑎𝑠

is determined by the constitutive relation 𝑭 𝑎𝑠 = −𝑘 (𝒓 𝑎 − 𝒓𝑏).
Our task now is to find a minimum set among these quantities, from

which all others can be determined via constitutive relations. As a rule of
thumb, the number of minimum quantities is given by

(number needed in driving equations) − (number of same-time relations)

considering all vector components. In our case the same-time relations are
four, with two components each:

𝑭𝑏𝑠(𝑡) = −𝑭 𝑎𝑠(𝑡)
𝑷𝑎(𝑡) = 𝑚𝑎𝒗𝑎(𝑡) 𝑷𝑏(𝑡) = 𝑚𝑏𝒗𝑏(𝑡)

𝑭 𝑎𝑠(𝑡) = −𝑘 [𝒓 𝑎(𝑡) − 𝒓𝑏(𝑡)]

so we should find a minimum set of (2 × 8) − (2 × 4) = 8 quantities.
The choice is not unique. Convince yourself that this minimal set could

be used:
𝒓 𝑎 , 𝒗𝑎 , 𝒓𝑏 , 𝒗𝑏

or this:
𝒓 𝑎 , 𝑷𝑎 , 𝑭 𝑎𝑠 , 𝒗𝑏

Usually we prefer a minimal set that consists of easily observable or
measurable quantities, like positions, velocities, temperatures. In our case,
let us agree to use 𝒓 𝑎 , 𝒗𝑎 , 𝒓𝑏 , 𝒓𝑏 ; note that each of these has two components:
𝑦𝑎 , 𝑧𝑎 , 𝑦𝑏 , . . . and so on, for a total of four.

This minimum set is called the state of the physical system:

] State of a physical system

The state of a physical system is the minimal amount of information
needed to drive the system from one time point to the next.
It is usually encoded in a minimal set of time-dependent quantities,
but the choice of quantities is often not unique. In this case we say
that different sets of quantities represent the same state.
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The values of a state at the beginning of a numerical time integration
are called initial conditions.

The state of our system is 𝒓 𝑎 , 𝒗𝑎 , 𝒓𝑏 , 𝒓𝑏 . The values of the state at the
initial time, that is, the initial conditions, need to be declared before the
time-stepping loop, together with the value of the initial time. 4Ð page 167

3. From the state, determine the quantities necessary for forward-driving.
Recall that the forward-driving equations require, at each time step, the
2 × 8 quantities

𝑷𝑎(𝑡) , 𝑭 𝑎𝑠(𝑡) , 𝑷𝑏(𝑡) , 𝑭𝑏𝑠(𝑡) , 𝒓 𝑎(𝑡) , 𝒗𝑎(𝑡) , 𝒓𝑏(𝑡) , 𝒗𝑏(𝑡)

We must therefore find these from our state, at each new time step, by
using any necessary constitutive relations. In our case:

𝑷𝑎(𝑡) = 𝑚𝑎 𝒗𝑎(𝑡)
𝑭 𝑎𝑠(𝑡) = −𝑘 [𝒓 𝑎(𝑡) − 𝒓𝑏(𝑡)]
𝑷𝑏(𝑡) = 𝑚𝑏 𝒗𝑏(𝑡)

𝑭𝑏𝑠(𝑡) = −𝑭 𝑎𝑠(𝑡) = −
(
−𝑘 [𝒓 𝑎(𝑡) − 𝒓𝑏(𝑡)]

)
𝒓 𝑎(𝑡) given
𝒗𝑎(𝑡) given
𝒓𝑏(𝑡) given
𝒗𝑏(𝑡) given

Note that to find the force 𝑭𝑏𝑠 from the state we needed to use two
equations.

In the code, the formulae that calculate the quantities necessary to
the forward-driving lines from the state need to be written within the
time-stepping loop, right before the forward-driving lines. 4Ð page 167

4. Find the new state from the time-updated quantities. The time-stepping
loop of our code is now able to determine quantities at a later time 𝑡 + Δ𝑡,
given the state at the present time 𝑡. The quantities that we obtain at the
later time are

𝑷𝑎(𝑡 + Δ𝑡) , 𝑷𝑏(𝑡 + Δ𝑡) , 𝒓 𝑎(𝑡 + Δ𝑡) , 𝒓𝑏(𝑡 + Δ𝑡)

We now want to be able to start the next loop iteration. The next iteration
needs the new value of the state 𝒓 𝑎 , 𝒗𝑎 , 𝒓𝑏 , 𝒓𝑏 ; but we have 𝑷𝑎 ,𝑷𝑏 , 𝒓 𝑎 , 𝒓𝑏 . We
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need therefore to convert the updated quantities back to the quantities
that constitute the state, within the time loop. This is again done by using
same-time equations. In our case we use

𝒓 𝑎(𝑡 + Δ𝑡) given
𝒓𝑏(𝑡 + Δ𝑡) given
𝒗𝑎(𝑡 + Δ𝑡) = 𝑷𝑎(𝑡)/𝑚𝑎

𝒗𝑏(𝑡 + Δ𝑡) = 𝑷𝑏(𝑡)/𝑚𝑏

Now are ready to go back to the beginning of the loop! 4Ð page 167

5. Decide the condition for stopping the time loop. For how long should
our simulation run? This obviously depends on the application. We may
want to run it for a given amount of time. Or we may want to stop it as
soon as some condition is met; for instance, if the position or speed of a
body reach particular values. The possibilities are endless.

We insert these conditions in the for- or while-loop, and initialize them
as necessary. 4Ð page 167

After these six steps, the essential part of our numerical-time-integration
script is ready. The script will probably need additional lines to perform
tasks that depend on the specific problem. For example we may want to
store the numerical values of some quantities at different times, for later
analysis; or plot some of them as the simulation evolves. The ways these
tasks are implemented are often heavily dependent on the programming
language, and we therefore cannot discuss them in detail here.
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Table 8.1 Example script for numerical time integration of the spring & bodies system.
The constants, initial values, and the stop condition (stop at 10 s) can of course be different.
Vector components are declared on one line.

%%%% 0. Constants and timestep
ma = 1;
mb = 1;
g = 9.80665;
k = 4;
Gya = 0; Gza = -ma*g;
Gyb = 0; Gzb = -mb*g;
dt = 0.01;

%%%% 2. State: ya,za,vya,vza,yb,zb,vyb,vzb; initial conditions
t = 0;
ya = 0; za = 0;
yb = 0.1; zb = 0.1;
vya = 0; vza = 0;
vyb = 0; vzb = 0.1;

%%%% 5. Condition for stopping loop
while t < 10

%%%% 3. Calculate forward-driving quantities from state
Pya = ma*vya; Pza = ma*vza;
Fyab = -k*(ya-yb); Fzab = -k*(za-zb);
Pyb = mb*vyb; Pzb = mb*vzb;
Fyba = -Fyab; Fzba = -Fzab;

%%%% 1. Drive forward in time
Pya = Pya + (Fyab + Gya)*dt; Pza = Pza + (Fzab + Gza)*dt;
Pyb = Pyb + (Fyba + Gyb)*dt; Pzb = Pzb + (Fzba + Gzb)*dt;
ya = ya + vya*dt; za = za + vza*dt;
yb = yb + vyb*dt; zb = zb + vzb*dt;
t = t + dt;

%%%% 4. Calculate new state from forward-driven quantities
vya = Pya/ma; vza = Pza/ma;
vyb = Pyb/mb; vzb = Pzb/mb;

end
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« Exercise 8.8

1. Examine our previous script tennisball.m for numerically integ- ¾ § 6.3.9 page 118
rating the motion of a tennis ball, and pinpoint where the six
building steps above are implemented.
Which quantities constitute the state in that script?

2. Implement the pseudo-code of Table 8.1 on page 167 in your
preferred programming language.
Your script should save all or some values of the state 𝒓 𝑎 , 𝒓𝑏 , 𝒗𝑎 , 𝒗𝑏 ,
and their corresponding 𝑡 values, so that it’s possible to plot their
time evolution afterwards.
(If you had difficulties writing your script, for the following exercises you can download
and use the script hooke_spring.m19, written for Octave20/MATLAB, as a starting
point.)

3. Run your script with the following values:

𝑡0 = 0 s 𝑡1 = 10 s Δ𝑡 = 0.001 s
𝑚𝑎 = 𝑚𝑏 = 2 kg 𝑘 = 5 N/m

𝒓 𝑎(𝑡0) = [−3, 0] m 𝒓𝑏(𝑡0) = [3, 0] m
𝒗𝑎(𝑡0) = [0, 0] m/s 𝒗𝑏(𝑡0) = [0, 0] m/s
𝑮𝑎(𝑡0) = [0, 0] N 𝑮𝑏(𝑡0) = [0, 0] N

Plot the 𝑦-coordinate of body 𝑎 against time 𝑡. What kind of time
dependence do you observe? can you explain it intuitively?
Now plot the trajectories of the two bodies, that is, 𝑧𝑎 against
𝑦𝑎 , and 𝑧𝑏 against 𝑦𝑏 . What do you observe? can you explain it
intuitively?
Plot, against time 𝑡, the 𝑦- and 𝑧-components of the total momentum
𝑷𝑎 +𝑷𝑏 for the system composed by the two bodies and the spring.
How do these component change? Why?

4. Run the script with the same parameter as before but the following
initial velocity values:

𝒗𝑎(𝑡0) = [1, 1] m/s 𝒗𝑏(𝑡0) = [−1, −1] m/s

Plot again the 𝑦-coordinate of body 𝑎 against time 𝑡. Is the time
dependence different from the previous simulation? How do the
trajectories of the two bodies look like this time?
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Plot again the components of the total momentum against time.
How do they change? Why have they the same time dependence
as before?

5. Run the script with the following initial velocity values:

𝒗𝑎(𝑡0) = [2, 2] m/s 𝒗𝑏(𝑡0) = [1, 1] m/s

Plot the trajectories of the two bodies. What do you observe this
time?

How do the components of the total momentum differ from the
previous simulation? Try to explain why.

6. Play with all the parameter values and initial conditions, and see
what happens. Before simulating, try to intuitively predict what
the behaviour of the system will be.

8.5.3 Non-Hookean spring: numerical time integration

The system of two masses connected by a non-Hookean spring with con- ¾ § 8.2.3 page 135
stitutive relation (8.4) is analytically challenging. Its numerical solution,
however, only involves a change of a couple of lines to the code that you
wrote for Exercise 8.8.

A small mathematical change in a constitutive relation can lead to a
much richer set of behaviours, as the examples in the side plots below
show.

« Exercise 8.9

Modify the script you wrote for Exercise 8.8 so that the spring
is modelled by the non-Hookean constitutive relation (8.4). This
constitutive relation can be implemented with an if-statement, for
instance.

Then numerically time-integrate the system with the following
four different sets of parameters and initial values. Find out which
of these correspond to the trajectories shown in the side plots:
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Set 1:

𝑡0 = 0 s 𝑡1 = 10 s Δ𝑡 = 0.001 s
𝑚𝑎 = 0.1 kg 𝑚𝑏 = 0.1 kg 𝑘 = 0.5 N/m 𝑙n = 0.5 m

𝒓 𝑎(𝑡0) = [−0.3, 0.3] m 𝒓𝑏(𝑡0) = [0, 0] m
𝒗𝑎(𝑡0) = [1, 5] m/s 𝒗𝑏(𝑡0) = [0, 5] m/s

𝑮𝑎(𝑡0) = 𝑚𝑎 · [0, 0] N/kg 𝑮𝑏(𝑡0) = [0, 0] N

Set 2:

𝑡0 = 0 s 𝑡1 = 10 s Δ𝑡 = 0.001 s
𝑚𝑎 = 2 kg 𝑚𝑏 = 2 kg 𝑘 = 5 N/m 𝑙n = 5 m

𝒓 𝑎(𝑡0) = [−3, 0] m 𝒓𝑏(𝑡0) = [3, 0] m
𝒗𝑎(𝑡0) = [0, 0] m/s 𝒗𝑏(𝑡0) = [0, 0] m/s
𝑮𝑎(𝑡0) = [0, 0] N 𝑮𝑏(𝑡0) = [0, 0] N

Set 3:

𝑡0 = 0 s 𝑡1 = 10 s Δ𝑡 = 0.001 s
𝑚𝑎 = 1 kg 𝑚𝑏 = 5000 kg 𝑘 = 5000 N/m 𝑙n = 5 m

𝒓 𝑎(𝑡0) = [−3, 0] m 𝒓𝑏(𝑡0) = [0, 0] m
𝒗𝑎(𝑡0) = [0, 0] m/s 𝒗𝑏(𝑡0) = [0, 0] m/s

𝑮𝑎(𝑡0) = −𝑚𝑎 𝑔 · [0, 1] 𝑮𝑏(𝑡0) = [0, 0] N

Set 4:

𝑡0 = 0 s 𝑡1 = 10 s Δ𝑡 = 0.001 s
𝑚𝑎 = 1 kg 𝑚𝑏 = 5000 kg 𝑘 = 5 N/m 𝑙n = 5 m

𝒓 𝑎(𝑡0) = [−3, 3] m 𝒓𝑏(𝑡0) = [0, 0] m
𝒗𝑎(𝑡0) = [0, 0] m/s 𝒗𝑏(𝑡0) = [0, 0] m/s
𝑮𝑎(𝑡0) = 𝑚𝑎 𝑔 · [0, 1] 𝑮𝑏(𝑡0) = [0, 0] N

Play with other parameters and initial values!

-4 -2 0 2 4 6

-12

-10

-8

-6

-4

-2

0

2

	y/m

	z
/
m

0 1 2 3 4 5

0

10

20

30

40

50

	y/m

	z
/
m

-4 -2 0 2

-4

-2

0

2

4

	y/m

	z
/
m

Examples of trajectories of
two masses connected by a
non-Hookean spring, for dif-
ferent values of parameters
and initial conditions. Mass 𝑎
in blue, Mass 𝑏 in red

170



8. Balance of momentum 8.6. Example script for non-Hookean spring

8.6 Example script for non-Hookean spring

Here is an example script that is a solution for Exercise 8.9 p. 169. It is a
generalization of the tennisball.m script. Blue lines are strictly related ¾ § 6.3.9 page 118
to numerical time integration; grey lines take care of saving and plotting
data.

Download rubberband2D.m21
1 %%% rubberband2D.m
2 %% Simulation of two bodies connected by non-Hookean rubber band
3 %% SI units used throughout
4 %% Coordinates (y,z)
5 %%%% Constants
6 ma = 1; % mass of object a
7 mb = 5000; % mass of object b
8 g = 9.80665; % gravitational acceleration
9 k = 5; % spring constant

10 ln = 5; % natural length of rubber band
11 %%
12 Gya = 0; Gza = -ma*g; % gravity supply on object a
13 Gyb = 0; Gzb = -mb*g*0; % gravity supply on object b
14 %%
15 t1 = 10; % final time
16 dt = 0.001; % time step
17 %%%% STATE: y,z,vy,vz for a and b; initial conditions
18 t = 0; % initial time
19 ya = -3; za = 3; % initial position of object a
20 yb = 0; zb = 0; % initial position of object a
21 vya = 0; vza = 0; % initial velocity of object a
22 vyb = 0; vzb = 0; % initial velocity of object b
23 %%
24 %%%% Plot & saving
25 %% adjust final time if not multiple of timestep
26 t1 = t1 + mod(t1-t,dt);
27 %% Save values of all quantities at some steps during the simulation,
28 %% for subsequente analysis or plotting
29 %% (saving at all timesteps could be too costly)
30 Nsaves = 200; % number of timepoints to save during the simulation
31 %% Calculate time interval for saving
32 dsave = (t1-t)/(Nsaves-1);
33 if abs(dsave) < abs(dt)
34 error(’time interval between saves is smaller than timestep’)
35 end
36 %% Initialize vectors to contain saved values
37 tSave = nan(Nsaves,1); % time
38 yaSave = nan(Nsaves,1); zaSave = nan(Nsaves,1); % position object a
39 ybSave = nan(Nsaves,1); zbSave = nan(Nsaves,1); % position object b
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40 vyaSave = nan(Nsaves,1); vzaSave = nan(Nsaves,1); % velocity object a
41 vybSave = nan(Nsaves,1); vzbSave = nan(Nsaves,1); % velocity object b
42 %% Save initial values
43 i = 1; % index that keeps count of savepoints
44 t0 = t;
45 tSave(1) = t;
46 yaSave(1) = ya; zaSave(1) = za;
47 ybSave(1) = yb; zbSave(1) = zb;
48 vyaSave(1) = vya; vzaSave(1) = vza;
49 vybSave(1) = vyb; vzbSave(1) = vzb;
50 %% Initialize plot
51 close all;
52 cols = get(0, ’DefaultAxesColorOrder’);
53 plot(yaSave(1), zaSave(1), ’s’,’Color’,cols(1,:)); axis(’tight’);
54 hold on;
55 plot(ybSave(1), zbSave(1), ’o’,’Color’,cols(2,:));
56 xlabel(’{\it y}/m’); ylabel(’{\it z}/m’);
57 %%
58 %%%% Numerical time integration
59 %% loop
60 while t < t1
61 %% We need y,z,vy,vz,Py,Pz,Fy,Fz for a and b (G constant)
62 %% we have y,z,vy,vz
63 %% find Py,Pz,Fy,Fz using constitutive relations
64 Pya = ma*vya; Pza = ma*vza;
65 Pyb = mb*vyb; Pzb = mb*vzb;
66 %% non-Hookean constitutive relation
67 l = norm([ya-yb, za-zb]); % present length
68 if l < ln
69 Fyas = 0; % momentum flux from spring to a, y comp.
70 Fzas = 0; % momentum flux from spring to a, z comp.
71 else
72 Fyas = -k*(ya-yb)*(l-ln)/l;
73 Fzas = -k*(za-zb)*(l-ln)/l;
74 end
75 Fybs = -Fyas;
76 Fzbs = -Fzas;
77 %%
78 %% Drive forward in time
79 %% update momentum
80 Pya = Pya + (Fyas + Gya)*dt;
81 Pza = Pza + (Fzas + Gza)*dt;
82 Pyb = Pyb + (Fybs + Gyb)*dt;
83 Pzb = Pzb + (Fzbs + Gzb)*dt;
84 %% update position
85 ya = ya + vya*dt;
86 za = za + vza*dt;
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87 yb = yb + vyb*dt;
88 zb = zb + vzb*dt;
89 %% update time
90 t = t + dt;
91 %%
92 %% Find new state for next iteration
93 %% We need y,z,vy,vz
94 %% we have y,z,Py,Pz
95 %% find vy,vz using constitutive relations
96 vya = Pya/ma; vza = Pza/ma;
97 vyb = Pyb/mb; vzb = Pzb/mb;
98 %%
99 %% Check whether to save & plot at this step

100 if min(abs([0 dsave] - mod(t-t0, dsave))) <= abs(dt)/2
101 i = i+1;
102 tSave(i) = t;
103 yaSave(i) = ya; zaSave(i) = za;
104 ybSave(i) = yb; zbSave(i) = zb;
105 vyaSave(i) = vya; vzaSave(i) = vza;
106 vybSave(i) = vyb; vzbSave(i) = vzb;
107 plot(ya, za, ’s’,’Color’,cols(1,:));
108 plot(yb, zb, ’o’,’Color’,cols(2,:));
109 pause(0.001);
110 end
111 end
112 %% Plot full trajectory
113 plot(yaSave,zaSave,’-’,’Color’,cols(1,:));
114 plot(ybSave,zbSave,’-.’,’Color’,cols(2,:));
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Chapter 9

Balance of energy

I turned the page. The answer was, for the wind-up toy,
“Energy makes it go.” And for the boy on the bicycle,
“Energy makes it go.” For everything, “Energy makes it go.”
Now that doesn’t mean anything. Suppose it’s “Wakalixes.”
That’s the general principle: “Wakalixes makes it go.”
There’s no knowledge coming in. The child doesn’t learn
anything; it’s just a word! [. . .]
It’s also not even true that “energy makes it go,” because if
it stops, you could say, “energy makes it stop” just as well.

R. P. Feynman 1989

9.1 Formulation and generalities

] Balance of energy

Volume content: 𝐸 Flux: 𝛷 Supply: 𝑅

𝐸(𝑡1) = 𝐸(𝑡0) +
∫ 𝑡1

𝑡0

𝛷(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑅(𝑡)d𝑡

integral form

d𝐸(𝑡)
d𝑡 = 𝛷(𝑡) + 𝑅(𝑡)

differential form

(9.1)

The balance of energy is extremely important in physical phenomena
that underlie many modern (post-industrial revolution1) technologies.
It must often be explicitly accounted for, together with the balance of
momentum; and it often is the main governing balance, when the balance
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of momentum can be neglected. It’s the relevant balance when we put
thick clothes on in order to keep warm, or when we watch a video or do
computations on a laptop.

In discussing the balance of momentum we saw that there were just ¾ § 8.1 page 131
a few constitutive relations for its volume content 𝑷, and a plethora of
constitutive relations for its flux 𝑭 . In the case of energy there is a great
variety of constitutive relations that connect both its volume content 𝐸
and its flux 𝛷 to many other quantities: matter, momentum, angular
momentum, auxiliary quantities like metric and temperature, and others. ¾ § 3.9 page 50

The balance of energy is therefore also very important for numerical
time integration. Recall that balance laws, if used alone, allow us to predict
volume contents at a later time, but not fluxes or supplies. Fluxes and
supplies must either be given as boundary conditions, or predicted by ¾ § 6.3.5 page 113
constitutive relations that connect them to the volume contents of other
quantities. The balance and constitutive equations for energy often have
this particular “gluing” role.

9.1.1 Definitions of ‘total energy’

In the physics literature we can read about energies and energy fluxes
having all sorts of names – ‘internal’, ‘kinetic’, ‘potential’, ‘elastic’, ‘electro-
magnetic’, and others. We can also read about different kinds of energy
balances, which can be related to one another through particular sequences
of mathematical steps.

One confusing aspect of such variety is that it becomes unclear what
is, and what is not, to be counted as “energy content”. One example is
‘gravitational potential energy’. Some texts define it as “energy an object
possesses because of its position in a gravitational field”2, that is, as energy
content. Other texts, especially in fluid dynamics or material science, do

Snippets from a formula on
p. 330 of Introductory Transport
Phenomena (Bird et al. 2015).
This text does not consider
gravitational potential energy
to be part of the total en-
ergy. Compare the expres-
sion above on the right with
eq. (9.4) on page 182 below.

not include any gravitational terms in the energy content; related terms
appear instead as energy fluxes or supplies. Another example is ‘kinetic
energy’, which is sometimes included in the total energy content, and
sometimes not, for instance in fluid dynamics.

One can show that all these points of view have mathematically the
same consequences. Is the definition of ‘total energy content’ arbitrary,
then? Yes it is, and relativity theory gives a clear understanding of this
arbitrariness.

Relativity shows that the definition of “total energy” depends on the choice
of a reference velocity and a reference clock. This choice of velocity & clock
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can even be different at each spacetime point. Furthermore, this choice is
independent from the choice of a coordinate system. That is, once we have chosen
coordinates (𝑡 , 𝑥, 𝑦, 𝑧), we can still choose arbitrary reference velocities
and reference clocks to define ‘total energy’.

space

ti
m
e

A reference ‘velocity & clock’
is simply a vector with
four components in four-
dimensional spacetime

Given a coordinate system (𝑡 , 𝑥, 𝑦, 𝑧), one of the following three choices
is usually implicitly made, when electromagnetic fields are negligible:

� At each point in space and time we may choose a zero coordinate
velocity – that is, we don’t move with respect to the coordinates
(𝑥, 𝑦, 𝑧) – and we may measure time according to coordinate time 𝑡.

In Newtonian approximation, the total energy content defined by
this choice includes so-called internal-energy, kinetic-energy, and
gravitational-potential-energy terms.

Ö If matter is present, we may choose the matter’s velocity (which is
related to the matter flux), and we may measure time according to ¾ § 4.9 page 75
the proper time of a clock moving together with that body of matter.

In Newtonian approximation, the total energy content defined by this
choice includes only an internal-energy term. Note that this energy
cannot be defined if matter is not present. This definition of energy is
often adopted in the description of fluids.

Â� We may choose a zero coordinate velocity, as in the first case, but
measure time according to proper time rather than coordinate time 𝑡. ¾ § 2.1 page 21

In Newtonian approximation, the total energy content defined by
this choice includes internal-energy and kinetic-energy terms, but no
terms related to gravity (this is the choice underlying the formula
snippet in the previous side picture).

Each of these differently defined energies satisfies a balance law with
different fluxes and supplies. An interesting property of the second defini-
tion above is that the gravitational field is completely absent in its volume
content, flux, and supply.

Note that we do not need to use all of these differently defined energies
at the same time; one is enough. Depending on the physical application or
problem, one definition can be mathematically more convenient to use
than another.

In these notes we shall use the ‘total’ or ‘coordinate’ energy, because it
has the following interesting or convenient features:

• It is defined anywhere, even where no matter is present.
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• Its supply is practically zero with coordinate systems and coordinate
time typically used for physical phenomena on Earth (International
Terrestrial Reference System, ITRS3) or in the solar system (Interna-
tional Celestial Reference System, ICRS4). In other words, this energy
practically satisfies a conservation law in these common coordinate
systems.

Map of some distant astro-
nomical objects used to define
the International Celestial
Reference Frame (from The
ICRF5)

• Its volume content and flux typically contain terms that refer to the
motion of matter and to the gravitational field.

- An aspect still rarely discussed

Most physics textbooks today unfortunately do not mention the de-
pendence of the energy definition on a reference velocity & clock; or
worse they mix it up with the dependence on coordinate systems. This
dependence, however, is as important as the fact that energy and mass
are the same thing.

9.1.2 Forms of energy

Once we have agreed on a definition of ‘total energy content’ by means of
a reference velocity & clock, a distinction is usually further made between
different “forms” of energy, for example ‘elastic’ or ‘electromagnetic’. This
distinction as a different origin: it comes from particular constitutive relations
that connect the total energy to other quantities like matter, temperature,
electromagnetic field. There is a wild variety of such constitutive relations,
which depend on the physical phenomenon to be described.

In general it is not possible to separate the dependence of total energy
on other quantities into a sum of neatly distinct “pieces” like:

“mechanical energy”+“thermal energy”+“electromagnetic energy”+· · ·

and say “this is the energy contributed by matter”, “this is the energy
contributed by the electromagnetic field”, and so on. Energy is a property
of the other quantities taken as a whole. The absence of such a separation

The functioning of a guitar
pickup is based on the fact
that energy cannot be clearly
separated into ‘mechanical’
and ‘electromagnetic’ (image
by Georg Feitscher6)

is the origin of many interesting and useful physical phenomena like
piezoelectricity7 and magnetostriction8.

In some situations, however, it is possible to approximately express
energy as a sum of terms that depend on particular quantities only. In
these cases we can speak for instance of ‘elastic energy’, ‘radiation energy’,
and similar expressions denoting the terms in the approximate sum.
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9.1.3 Is energy conserved?

Energy is balanced, but not conserved, according to our definitions of these ¾ § 5.3 page 83
terms. This is not a controversial statement: recall that many texts use the
term ‘conservation’ in the sense of ‘balance’, that is, they are not excluding
the presence of a volume supply. In fluid mechanics, for instance, the

Balance of internal energy in
a classic text on fluid dynam-
ics (Batchelor 2000 eq. (3.4.3)).
The first summand on the
right is the energy supply.

internal-energy definition is typically used, and as previously mentioned
this energy definition satisfies a balance law, not a conservation law.

The statement “energy is conserved”, however, is often meant in another
sense: if we take a control volume where nothing is flowing in or out – no
energy, matter, electric charge, electromagnetic field, momentum – then
isn’t its energy content conserved, constant in time?

The answer to this question is also no. As far as we know, there is
constant creation of energy on cosmological scales, no matter how we
choose the reference velocity & clock for the definition of energy. The total
energy of the universe (provided such a notion can be mathematically
defined) is therefore not constant. The reason is that the metric of the

Depiction of change of space-
time metric on cosmological
scales, in three different co-
ordinate systems (from Davis
& Lineweaver 2004)

universe is not constant along the time direction – the so-called expansion
of the universe9 – and an energy that is strictly conserved can only be
defined if the metric is constant along some time direction:

cosmologists have not done a very good job of spreading the word about
something that’s been well-understood since at least the 1920’s: energy is
not conserved in general relativity Carroll 201010

See Carroll’s11 and Baez’s12 interesting posts about this topic.
Something analogous is true for momentum and angular momentum:

they are strictly conserved, that is, their supplies are zero, only if the
spacetime metric remains the same in different spatial directions and
under rotations. We have therefore this curious difference:

• On planetary scales the spacetime metric is not quite constant in space
but almost constant in time; so momentum and angular momentum
are not conserved, but energy approximately is.

• On cosmological scales the spacetime metric is approximately con-
stant in space but not in time; so momentum and angular momentum
are approximately conserved, but energy is not.

The fact that energy is not conserved, however, does not mean that we
could find ways for our cars or laptops to magically operate by themselves.
First, the amount of energy supply in our solar system and even in our
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galaxy is negligible. For devices operating in the solar system, any increase
in energy content ultimately comes as an energy influx from the Sun.
Second, the human problem of “using energy” is not about energy creation
but about energy conversion from one form to another. This will be the
topic of a later chapter.

9.1.4 Temperature

In physical phenomena where the balance of energy must be taken explicitly
into account, an auxiliary quantity typically appears in our description of ¾ § 3.9 page 50
the phenomenon: temperature.

We have an intuitive understanding of the notion of hotness and coldness.
Temperature quantifies these notions. The physical bases and measurement

Inventing Temperature by
H. Chang (2004) gives a bril-
liant account of the history of
invention of temperature, as
well as an interesting portrait
of how scientific concepts are
born and develop.

Is There a Temperature? by
T. S. Biró (2011) discusses fas-
cinating physical phenomena
for which our microscopic un-
derstanding of temperature is
still incomplete.

procedures for this quantification are far from trivial, but we shall take
them for granted in the present notes.

For some physical phenomena, especially those involving gases, we
know that temperature is related to the invisible motion of microscopic
parts of matter, such as molecules. But there are also physical phenomena
for which our microscopic understanding of temperature is more complex,
and in some cases still unclear.

Temperature is useful because it enters in many constitutive relations
involving energy, but is easier to measure than energy. It will thus appear
in our equations and in our numerical time-integration procedures.

There are several scales of temperature measurement; of special im-
portance is thermodynamic temperature13, also called absolute temperature,
which is measured in kelvins (K). Thermodynamic temperature has the
special property of being always positive in most physical phenomena
(there are exceptions, especially in some phenomena where statistical
mechanics14 becomes relevant).

In these notes we shall use thermodynamic temperature, denoting it 𝑇.
Its relation with Celsius temperature 𝑇C (measured in degrees Celsius, ◦C)
is given by

𝑇C = 𝑇 − 273.15 K (9.2)

that is, a redefinition of the “zero” value; for instance 25.00 ◦C =

298.15 K . Note that temperature differences are the same for the two
temperatures: Δ𝑇C = Δ𝑇, because the constant zero-value cancels out.

Temperature generally depends on the place and the time, so it can be
a function of the coordinates: 𝑇(𝑡 , 𝑥, 𝑦, 𝑧).
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9.2 Constitutive relations for energy content

Energy probably has the greatest variety of constitutive relations for its
content and its flux. Whole books are dedicated to the discussion of
constitutive relations for energy.

In these notes we shall first restrict our focus on general constitutive
relations that can be applied in physical phenomena that involve matter
but not electric charge or the electromagnetic field. Then we shall restrict
our focus even further, on constitutive relations for specific kinds of matter
in particular states, for example ideal gases. Often we shall also simplify
the discussion by considering physical phenomena where only one spatial
dimension is relevant.

9.2.1 Internal, kinetic, gravitational potential energy

If a control volume contains matter, and any electric charge or electromag-
netic field is negligible, then that control volume also contains an amount
of total energy-mass that can be written in a very general form.

] Energy associated with matter

Consider a control volume close to Earth’s surface and containing
an amount of matter 𝑁 but no electric charges or electromagnetic
fields. This control volume must also be such that the coordinate
velocity 𝒗, molar mass 𝜌 of the matter within, and the 𝑧-coordinate ¾ § 7.2.1 page 124
are approximately the same throughout the volume (this is true, for
instance, if the volume is small enough). Then the total energy-mass
content in this control volume is given by

𝑚𝑐2 +𝑈 + 1
2𝑚𝒗2 + 𝑚𝑔𝑧 with 𝑚 = 𝜌𝑁 (9.3)

In this expression, 𝑐 is the speed of light, 𝑔 is the gravitational ¾ § 5.6.1 page 100
acceleration, and we have assumed a coordinate system (𝑥, 𝑦, 𝑧) with
𝑧 pointing upwards.
The term 𝑈 is called internal thermodynamic energy and is given
by some further constitutive relation that depends of the physical
phenomenon. The terms 1

2𝑚𝒗2 and 𝑚𝑔𝑧 are called kinetic energy
and gravitational potential energy.
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Usually we change the “zero” of energy-mass content, removing the
term 𝑚𝑐2 and defining the total energy as

𝐸 = 𝑈 + 1
2𝑚𝒗2 + 𝑚𝑔𝑧 (9.4)

The formulae above are valid in Newtonian approximation, for speeds
smaller than the speed of light and weak gravitational fields.

As we discussed some chapters ago, energy and mass are the same ¾ § 3.4.1 page 37
thing. Formula (9.3) above is actually also the mass, multiplied by 𝑐2,
contained in the control volume. In these notes we often call only ‘𝑚’ the
mass contained in a control volume, but clearly this is an approximation: we
are neglecting the terms (𝑈 + 1

2𝑚𝒗2 +𝑚𝑔𝑧)/𝑐2 because they are extremely
small – there are in fact even smaller terms, coming from relativity theory,
that are neglected in the expressions above.

‘the baryon “mass” density 𝜌0,
despite its name, and despite the
fact it is sometimes even more
misleadingly called “density of
rest mass-energy,” is actually a
measure of the number density
of baryons 𝑛, and nothing more.
It is defined as the product of
𝑛 with some standard figure for
the mass per baryon, 𝜇0, in some
well-defined standard state; thus,
𝜌0 ≡ 𝑛𝜇0.’

Misner et al. 2017 § 39.3

In the sum 𝑚𝑐2 +𝑈 there actually isn’t a clear-cut separation between
𝑚𝑐2 and 𝑈 , because the constant value of the molar mass density 𝜌 in
𝑚 = 𝜌𝑁 is arbitrary to some degree. We can for example remove some
constant amount 𝑢 (possibly negative) from the definition of 𝑈 , while
adding 𝑢/𝑐2 to the definition of 𝑚:(

𝑚 + 1
𝑐2𝑢

)
new 𝑚

𝑐2 + (𝑈 − 𝑢)
new 𝑈

The change in 𝑚 is usually negligible, beyond its 9th decimal digit. But
the change in 𝑈 can be quite large. This means that we can arbitrarily
redefine the “zero” of the thermodynamic internal energy 𝑈 . For water
and steam, for instance, 𝑈 is decreed to be zero at a particular physical
condition called triple point15 (Wagner & Kretzschmar 2008).

« Exercise 9.1

Consider a control volume containing water, with 𝑚 = 1 kg and
internal energy 𝑈 = 100 000 J. Suppose we want to redefine the
internal energy so that it is zero instead. By how much should we
redefine 𝑚, so that the sum 𝑚𝑐2 +𝑈 stays the same?
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- Zero-point of internal energy and conservation of matter

We must remember that 𝑚 = 𝜌𝑁 , so the content of matter 𝑁 and its
balance should also enter the discussion. In phenomena where matter
and antimatter are both present the zero-point of internal energy cannot
be redefined arbitrarily. Usually electric charge and electromagnetic
field become important in such phenomena, so the general constitutive
relation (9.3) may not be appropriate anyway.

The discussion above about the zero-point of internal energy is
somewhat imprecise, and meant only to give you an idea of why we
can define the zero-point arbitrarily. A rigorous but more complicated
analysis would involve the law of conservation of matter, and would
show that in appropriate circumstances the zero-point of internal energy
mathematically disappears from the balance of matter (Eckart 1940).

When the total mass-energy is required, for example in the Newtonian ¾ § 8.2 page 133
formula for momentum, we simply approximate it with 𝑚. But for physical
phenomena where energy exchanges are important, we change the “zero”
of our energy measurements, shifting it by 𝑚𝑐2, so that energy calculations
are numerically more manageable.

This is why we shall use the total energy 𝐸 as defined in formula (9.4):

𝐸 = 𝑈 + 1
2𝑚𝒗2 + 𝑚𝑔𝑧

Note that in this definition we can still arbitrarily choose the zero of 𝑈 .

This general constitutive relation applies to a large variety of physical
phenomena. But it is of little use unless we specify a detailed constitutive
relation for the internal energy 𝑈 . The latter can be wildly different
depending on the kind and state of matter, as we shall see later.

9.2.2 The separation between internal and kinetic energy
depends on the observation scale

Given a control volume containing matter, at a particular time and in a
coordinate system, the amount of total energy contained therein is uniquely
determined and agreed upon by all researchers, even if one researcher
is making measurements on that volume with coarse instruments, and
another researcher is making measurements on a molecular scale.
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But the separation of this total energy into internal, kinetic, gravitational
does depend on the detail and scale of observation. For instance, a researcher
who describes the matter within the volume as a continuous gas may
measure a total energy 𝐸 = 4000 J, and describe this as a sum of 𝑈 = 4000 J
internal energy, 0 J gravitational potential energy, and 0 J kinetic energy.
Another researcher, who describes the matter within the same volume as a
large number of atoms in motion, also measures a total energy 𝐸 = 4000 J,
but may describe this as a sum of 𝑈 = 0 J internal energy, 0 J gravitational
potential energy, and 4000 J kinetic energy, obtained by summing up 1

2𝑚𝒗2

for all the atoms in the volume.
The reason of this difference is that the first researcher does not measure

any visible velocity in the gas: the measuring instruments average it out
to zero. This researcher therefore attributes the total energy completely
to internal energy, and indeed still detects the atomic motion indirectly,
as a temperature possessed by the gas. The second researcher, on the other
hand, can measure the velocities of the individual atoms, and therefore
attributes all the total energy to kinetic energy. For this researcher the gas
has no temperature and no internal energy.

9.2.3 Examples of the exchange between internal, kinetic,
gravitational potential energies

Of importance in physics and engineering applications are not only changes
in the total energy 𝐸, but also exchanges among its internal, kinetic, and
gravitational terms, even when the total energy is constant. Here are some
examples.

Bodies in motion. In the preceding chapters we have considered small
bodies of matter such as a tennis ball. In many situations where the motion
of a body is involved, its internal energy 𝑈 is approximately constant, and
therefore we only focus on its kinetic 1

2𝑚𝒗2 and potential 𝑚𝑔𝑧 energies.
An exchange of energy can happen between them. For instance, in a tennis
ball falling in a vacuum, the gravitational energy is decreasing while the
kinetic energy is increasing at the same rate: the vertical coordinate of the
ball is decreasing, and its downward velocity increasing.

In other situations the internal energy is not constant, and there are
exchanges among all three energy components, as well as changes in the
total energy. A ball bouncing on the floor is an example. We can clearly
see that its vertical position 𝑧, and therefore its gravitational energy 𝑚𝑔𝑧,

184



9. Balance of energy 9.2. Constitutive relations for energy content

alternately decreases and increases. The same is true for its velocity 𝒗 and
kinetic energy 1

2𝑚𝒗2, which are zero at the highest and lowest (bouncing)
points. But we also observe that the highest vertical position of the ball
gets lower and lower, until the ball rests on the floor, which means that its
kinetic and gravitational energies are both zero. They have been converted
partly in internal energy 𝑈 of the ball, and partly transferred, via energy
flux, to the internal energy of the floor.

Another example where this kind of energy conversion and energy
flux are important is skydiving. The gravitational energy of a skydiver is
obviously decreasing. If it were completely converted to kinetic energy,
the skydiver would acquire a dangerously excessive falling speed. Instead,
this energy is luckily mainly transferred, via friction, to the internal energy
of the surrounding air, and partly converted into internal energy of the
skydiver. For this reason the kinetic energy, and therefore the falling
velocity, of the skydiver remain constant after some time.

« Exercise 9.2

A skydiver jumps with zero initial velocity at an altitude of 3000 m.
What would be the skydiver’s velocity at 1000 m, if there were no
changes in internal energy and no energy fluxes?

Compare the velocity you found and the typical velocity of
200 km/h that a skydiver may have at 1000 m, when the parachute
is deployed.

Springs and rubber bands. In studying Hookean and non-Hookean
springs and rubber bands in Chapter 8, we said that they are usually
modelled as objects without mass. They therefore have negligible kinetic
and potential energies. All their energy is therefore internal energy.

Gases. Matter in a gaseous state is also often modelled as having negli-
gible mass. All its energy is therefore modelled as internal energy. This
is similar to the modelling of objects like springs and rubber bands. An
important difference is that the internal energy of gases is typically highly
dependent on temperature, whereas the the temperature dependence for
springs can be neglected in many applications.

Solids and fluids. In modelling extended matter in a solid and fluid state,
usually all three forms of energy must be taken into account. They can

185



9. Balance of energy 9.3. Constitutive relations for energy flux

moreover be quite variable from one small control volume to another. This
is why their modelling and simulation can be extremely complex.

9.3 Constitutive relations for energy flux

9.3.1 Comments about movement of matter at a surface

We shall now discuss constitutive relations for energy fluxes through a
control surface. These relations are valid under two requirements:

• matter in contact with the control surface has velocity 𝒗
• there is no flux of matter through the control surface.
These two requirements sometimes appear as contradictory at first

sight: if there’s no flux of matter, then how can matter have a non-zero
velocity?

Both conditions can actually coexist, and there are two main ways in
which they do. Let’s discuss them briefly so that you can at least understand
them intuitively.

9.3.2 Heat flux and power

Think of a person pushing a door or lifting a weight on the palm of
their hand, a hammer hitting a piece of hot iron, or a bike-pump piston
quickly pressed down. These and many other physical phenomena can be
characterized as follows:

• there’s a control surface in contact with matter on both sides
• the control surface may be moving
• there is no flux of matter through the control surface
• electric charges and electromagnetic fields are negligible on a macro-

scopic scale.
In situations like these there is a general constitutive formula for the flux
of energy through the control surface.

] Heat flux and power

Consider a control surface, possibly moving, satisfying the conditions
above. This control surface must also be such that the velocity 𝒗 of
matter in contact with it, is the same at every point of the surface
(this is true, for instance, if the surface is small enough).
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Choose a crossing direction in order to define fluxes. If 𝑭 is the flux
of momentum through this control surface, then the energy flux 𝛷
through the surface is given by

𝛷 = 𝑄 + 𝑭 · 𝒗 (9.5)

The term 𝑄 is called the heat flux or heating; the term 𝑭 · 𝒗 is called
the mechanical power or working transmitted by the force 𝑭 .
If the heat flux vanishes, 𝑄 = 0 J/s, then the energy flux is called
adiabatic.
We can also consider the integrated flux of energy, that is, the total ¾ § 4.8 page 74
energy that flows through the surface between times 𝑡0 and 𝑡1:∫ 𝑡1

𝑡0

𝛷(𝑡)d𝑡 =
∫ 𝑡1

𝑡0

𝑄(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑭(𝑡) · 𝒗(𝑡) d𝑡

The integrated heat flux is called the heat transferred through the
surface, and the integrated mechanical power is called the mechanical
work done by the force

- Tricky points in applying the energy-flux formula

In applying the formula above, keep always in mind the following:

• The control surface can be purely imaginary, and there is no real
physical separation between the matter on its sides.

• The heat flux could be negative and the mechanical power positive,
or vice versa.

• When we deal with closed control surfaces, the conditions for
applying the formula above often do not hold over the whole
surface. For instance, the velocity 𝒗 or the heat flux 𝑄 could be
different on different parts the surface.

To calculate the total energy flux in such cases, we must first divide
the closed surface into parts for which the formula above can be
applied, then add the results.

The heat flux 𝑄 can be controlled in some situations, and in that case it
is specified as a boundary condition in a physical problem or simulation. In ¾ § 6.3.5 page 113
other situations it is instead given by a constitutive relation. Analogously
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for the momentum flux 𝑭 : in some situations it’s specified as a boundary
condition; in others it’s given by a constitutive relation, as we saw in many ¾ § 8.2 page 133
examples from the previous chapter.

9.3.3 The separation between heat and power depends on
the observation scale

We have discussed the fact that the total energy content in a control volume
doesn’t depend on our manner of description and measuring instruments,
but the separation into internal and kinetic energy does. A completely
analogous situation, and for analogous reasons, occurs for the flux of total
energy through a control surface, and its separation into heat flux and
mechanical power.

Consider two bodies of matter in contact. For one researcher, who
observes these bodies macroscopically, there may be a flux of total energy
𝛷 = 1 J/s through the contact surface, and no visible motion of matter.
This researcher therefore consider this energy flux to consist completely in
a heat flux 𝑄 = 1 J/s, and no mechanical power 𝑭 · 𝒗 since the velocity 𝒗
is zero. For another researcher, who can keep track of molecular motions
and velocities, the total-energy flux is still 𝛷 = 1 J/s; but this flux consists
completely in 1 J/s of mechanical power, obtained by summing up 𝑭 · 𝒗
for all molecules at the contact surface; the heat flux 𝑄 is zero.

9.3.4 Examples of heat and mechanical-power fluxes

Let us see some examples in which energy flux appears as heat flux, flux
of mechanical-power, or both.

Holding a cup of hot tea. When we hold a cup of hot tea or coffee, we
can feel a flux of energy from the cup to our hands. How much of it is heat
flux, and how much is mechanical power?

Let’s consider a control surface between our hands and the cup, and let’s
choose a hands → cup crossing direction. There is obviously a momentum

(Image from Bunka Japan16)

flux from our hands to the cup. The cup has a constant downward supply
of momentum from gravity, but it isn’t falling. This means that there must
be a influx of upward momentum. We can also feel the pressure that the
cup exerts on our hands; by the symmetry of fluxes this means that there
must also be a flux of momentum to the cup that points towards its centre.
So the total influx of momentum 𝑭 is not zero. The cup, however, is not
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moving: its velocity 𝒗 is zero. The mechanical power 𝑭 · 𝒗 is therefore zero
as well.

The energy flux through our control surface must therefore be com-
pletely in the form of heat flux 𝑄, and the heat influx through our control
surface is negative, because energy is flowing from the cup to our hands.

If we move the cup around, then its velocity is no longer zero, and
some mechanical power 𝑭 · 𝒗 can be transmitted. It shows as an increase
in the kinetic energy of the tea, which can even splash out of the cup.

Cooking. When we cook something we create a heat influx into the item
being cooked. No mechanical power is transferred, since the velocity of
matter is zero.

Spring and body. In studying Hookean and non-Hookean springs and
rubber bands, we saw that there is a momentum flux from one end of the
spring to the body attached at that end. If the momentum influx for the
body is 𝑭 , and the body is moving with velocity 𝒗, then there is an energy
flux into the body, in the form of mechanical power 𝑭 · 𝒗. This energy flux
increases the body’s kinetic energy 1

2𝑚𝒗2.
By the symmetry of fluxes, this same amount of energy flows out of

the spring, reducing its internal energy. Any heat flux between the spring
and the bodies attached to it is usually negligible.

Gases. In describing and using matter in a gaseous state, usually heat flux
and mechanical power must both be taken into account. Many physical
theories and technologies are indeed focused on the problem of generating
effluxes of power as large as possible from a body of matter, by providing
influxes of heat to it.

v

« Exercise 9.3

1. Water is flowing downwards in a pipe, as illustrated in the side
picture by the blue squiggly arrows. Take a control surface moving
with velocity 𝒗 as depicted in red. Can we apply formula (9.5) for
the energy flux through this control surface?

2. Suppose that there is no power 𝑭 ·𝒗 transmitted through a moving
control surface. Does this mean that the momentum flux 𝑭 is zero?
Or does this mean that the matter’s velocity 𝒗 is zero?
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3. A control surface, with a given crossing direction, is moving with
velocity [0, 2,−3] m/s. Through this surface we have a heat flux
of −3 J/s and a momentum flux of [1,−2, 1] N. How much is the
energy flux through the surface?

4. Consider the control surface that separates air from the piston
within a bike pump, schematized by the red line in the side
illustration. The piston and the gas in contact with it, on the two
sides of the control surface, are moving downward with a velocity
[0, 0,−0.5] m/s. The downward flux of momentum is [0, 0,−20] N.
The energy flux through this surface is adiabatic. How much is
the downward flux of energy through this surface?

5. Consider again the control surface of question 3. above. We are
now told that there is no matter flux through this surface, and the
matter in contact with the surface on both sides is moving with
the same velocity as the surface. How much is the energy flux
through the surface?

6. Imagine a cylindrical closed control surface enveloping the air
within the bike pump of question 4. above. The surface previously
considered is part of this closed control surface. We are told that
across the rest of the closed surface there is a total heat efflux
of 2 J/s. How much is the total energy influx through the closed
control surface?

9.3.5 Summary: energy constitutive relations for matter

So far we have discussed two general constitutive relations: one for energy
content 𝐸, formula (9.4); and one for energy flux 𝛷, formula (9.5). We
also said that our definition of total energy approximately satisfies a ¾ § 9.1.1 page 178
conservation law, so the energy supply 𝑅 is zero. Let us rewrite here these
constitutive relations, explicitly indicating their time dependence:

𝐸(𝑡) = 𝑈(𝑡) + 1
2𝑚𝒗(𝑡)2 + 𝑚𝑔𝑧(𝑡)

𝛷(𝑡) = 𝑄(𝑡) + 𝑭(𝑡) · 𝒗(𝑡)
𝑅(𝑡) = 0

Let us recall the physical conditions under which they are valid:
• matter present within and directly outside the control volume
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• control volume and surface such that the matter velocity 𝒗 and molar
mass 𝜌, and therefore also 𝑚, are the same throughout

• no matter flux through the control surface
• no electric charges or electromagnetic fields
• Newtonian approximation, and close to the Earth’s surface

- Division of control volume or surface may be necessary

In some situations we must divide a control volume or closed control
surface into several parts where these conditions are valid.

Under these conditions, the formulae above can be used together with
the balance of energy (9.1) in order to describe many common physical
situations, with all sorts of materials, and to make predictions, for instance
by numerical simulations. Note how these constitutive formulae connect ¾ § 6.3 page 108
the fluxes and volume contents of energy, matter, momentum; and they
even involve two new auxiliary quantities: the internal energy 𝑈 and the
heat flux 𝑄.

In order to concretely use these constitutive formulae, we need first
more specific constitutive relations for the internal energy 𝑈 , the heat flux
𝑄, and the momentum flux 𝑭 . The variety of constitutive relations for these
three quantities is the subject of materials science17, and could fill numerous
tomes. Some constitutive relations for these quantities are mathematically
extremely complex, involving integrals and partial derivatives; this is no
surprise, because they reflect the complexity of the materials they model.

We shall now focus on a set of simple constitutive relations for 𝑭 , 𝑈, 𝑄

which can be used in a more restricted but still quite broad range of
physical situations, involving gases.

£ What if there’s matter flux? Transport terms

We have repeated many times that the constitutive relation for the energy
flux is through a control surface

𝛷 = 𝑄 + 𝑭 · 𝒗

is only valid when there isn’t any flux of matter through that surface.
What if there is a flux of matter? how does that constitutive relation
change?

There is indeed a more general formula that can be used even when
there is a flux of matter through the control surface. To understand it,
however, we must:
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• give the formulae for the fluxes of matter, momentum, energy at the
same time

• take into account the contents of matter, momentum, energy in a thin
control volume connected to the surface

• take into account the velocity of the control surface itself.
So the description is somewhat more complicated; you see why we choose
to avoid this more general situation in the notes. But here are the fully
general formulae, in case you’re curious.

Choose a crossing direction for the surface, and
• 𝒗s is the velocity of the surface
• 𝒏s is a unit vector orthogonal to the surface, having the same direction

as the crossing direction
• 𝐴 is the area of the surface
• 𝑉 is the volume of a thin control volume in contact with the surface
• 𝑁 , 𝑷, 𝐸 are the matter, momentum, energy contents in that thin control

volume
• 𝒗 is the velocity of matter in contact with the surface
Then the fluxes of matter, momentum, energy are given by the following
general formulae, if no electromagnetic fields or electric charges are
present and in Newtonian approximation:

𝐽 =
𝐴

𝑉
𝑁 𝒏s · (𝒗 − 𝒗s)

𝑭 = 𝐴 𝒏s · 𝝈 + 𝐴

𝑉
𝑷 𝒏s · (𝒗 − 𝒗s)

𝛷 = 𝑄 + 𝐴 𝒏s · 𝝈 · 𝒗 + 𝐴

𝑉
𝐸 𝒏s · (𝒗 − 𝒗s)

In these formulae, 𝝈 is a 3-by-3 matrix called the stress tensor or pressure
tensor. The terms containing the expression 𝒏s ·(𝒗−𝒗s) are called transport
terms, because they originate from the transport of matter through the
surface.

If the flux of matter is zero, 𝐽 = 0, then the expression 𝒏s · (𝒗−𝒗s) must
be zero too, and the analogous expressions in the fluxes of momentum
and energy are zero as well; all fluxes become much simpler.

9.4 Rigid bodies

Rigid bodies have very peculiar properties in respect of the balance of
energy. A rigid body is a body (of matter) that has constant volume and
shape; or in other words a body that cannot deform. It can of course move,
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and in general its amount of matter, mass-energy, and velocity can be
different in different parts of the body; think of a boomerang for instance.

Long exposure of the traject-
ory of a boomerang outfitted
with LEDs18

The constitutive equations for the energy of a rigid body take on a
peculiar form, because of its rigidity:

• the heat flux contributes only to changes in internal energy

• the internal energy can only change through heat fluxes

• the mechanical power contributes only to changes in kinetic &
potential gravitational energy

• kinetic & potential gravitational energy can only change through
mechanical power

Let’s express these conditions mathematically. Consider a control
volume containing all or part of a rigid body, and over which the velocity
𝒗 is the same in different sub-volumes, even if it can change with time. The
mass and internal energy contained in the control volume are 𝑚 and 𝑈 ,
the total momentum influx and heat flux across the closed control surface
are 𝑭 and 𝑄. Use a vertical coordinate 𝑧. Then, in integral form:

𝑈(𝑡1) = 𝑈(𝑡0) +
∫ 𝑡1

𝑡0

𝑄(𝑡)d𝑡 (9.6a)

1
2𝑚𝒗(𝑡1) + 𝑚𝑔𝑧(𝑡1) = 1

2𝑚𝒗(𝑡0) + 𝑚𝑔𝑧(𝑡0) +
∫ 𝑡1

𝑡0

𝑭(𝑡) · 𝒗(𝑡) d𝑡 (9.6b)

or equivalently in differential form:

d𝑈(𝑡)
d𝑡 = 𝑄(𝑡) (9.7a)

d
[ 1

2𝑚𝒗(𝑡)2 + 𝑚𝑔𝑧(𝑡)
]

d𝑡 = 𝑭(𝑡) · 𝒗(𝑡) (9.7b)

We can say that mechanical and thermal phenomena gets completely
separated in a rigid body. This separation does not occur for ordinary
deformable bodies: in general, mechanical power can produce changes in
internal energy.

Moreover, it turns out that the equations relating kinetic & gravita-
tional potential energy can be derived from the balance of momentum.
In other words, formulae (9.6b) and (9.7b) above can be derived from the
balance of momentum applied to the same control volume: they do not
represent some additional physical law.
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The special constitutive property of rigid bodies has an important
consequence. If we are not interested in the changes of the internal energy of a
rigid body, then we do not need to consider the balance of energy. The balance of
momentum is all we need.

This fact explain why we were able to solve many problems of motion
in the previous chapters: many bodies we considered, such as tennis balls
or blocks of materials, were practically rigid, and we were not investigating
their internal energies. The balance of momentum was therefore sufficient
to describe their motion. Springs and rubber bands are not rigid, but for
them we implicitly assumed that their internal energy was constant, and
no heat fluxes occurred.

Rigidity is obviously only an approximation. In fact, general relativity
makes this notion strictly speaking impossible. But in situations where
Newtonian approximations apply, the approximation of rigidity makes
many physical phenomena much easier to describe.

9.5 Constitutive relations for ideal gases

There is a set of simple constitutive relations which can be used as
approximations for many gases, especially when they are rarefied, that
is, when their amount of matter per unit volume 𝑁/𝑉 is low. We say that
these constitutive relations apply to ideal gases. When we say that some
material can be modelled as an ideal gas – or simply say “it’s an ideal gas”,
we mean that we can model it with good enough approximation using
these relations.

The constitutive relations for ideal gases involve constants and a couple
of functions that can be different depending on the kind of gas. So there
isn’t just one ideal gas, but a family of them. Some texts speak of the ideal
gas, as if there was only one; but they do so because they discuss properties
that are common to all ideal gases.

In discussing the constitutive relations below, we consider a closed
control surface that encloses an amount of some ideal gas. We assume
that there is no flux of the gas through the enclosing surface, and more
generally that the conditions listed in the previous 9.3.5summary are
satisfied. These conditions are approximately true for many practical cases,
like air under compression or expansion in a bike pump.

If we want to model a body of gas accurately, however, we generally
need to use a large number of such control volumes, each one enough
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small that the conditions above are approximately satisfied within it. This
way we can try to simulate many interesting physical behaviours that ideal
gases can have, such as turbulence.

9.5.1 Pressure (momentum flux) of an ideal gas

We previously discussed the peculiar fluxes of momentum that take place
in a gas, which we generally call the internal pressure of the gas. Now we ¾ § 8.3.6 page 153
discuss a constitutive relation that connects:

• the flux of momentum 𝑭 through the closed control surface containing
an ideal gas

• the amount of ideal gas within
• the temperature within
• the volume enclosed by the control surface
This constitutive relation is more easily expressed in terms of the

momentum flux through a surface, divided by the area of the surface:

] Pressure vector, stress vector, pressure

For a control surface of area 𝐴where the momentum flux 𝑭 is uniform
throughout, and through which there is no matter flux, we call pressure
vector or stress vector 𝒑 the momentum flux divided by the area:
𝒑 := 𝑭/𝐴.
If the momentum flux 𝑭 , and therefore the pressure vector, are
orthogonal to the surface and point away from the surface, then we call
pressure the magnitude of the pressure vector, and usually denote it
𝑝:

𝑝 := |𝒑| ≡ |𝑭 |
𝐴

(9.8)

The name tension is used instead of pressure if the momentum flux
points towards the surface. Compare our discussion about compress- ¾ § 4.6 page 70
ive and tensile momentum fluxes.
Pressure has physical dimensions of force per unit area, with units
N/m2; this unit also called pascal (Pa).

- ‘Pressure’ can have many different meanings

Be aware that the term ‘pressure’ is used in many different and some-
times even opposite ways in the physics literature. Some texts use
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‘pressure’ to indicate not just the magnitude of 𝑭/𝐴, but the full vector;
so for them ‘pressure’ is not just a number, but a set of three vector
components. Some texts use ‘pressure’ to denote the pressure vector; so
for them a pressure need not be orthogonal to a control surface. Some
texts use ‘pressure’ also to indicate ‘tension’, or vice versa.

So when you read a text that uses or discusses ‘pressure’, make sure
to get correctly in which sense the text is using this word.

In these notes we shall sometimes use ‘pressure’ in a slightly different
or more general meaning, which should be clear from the context.

Now that the notion of pressure is introduced, we can formulate a
particular constitutive relation for the momentum flux:

] Ideal-gas law with viscosity

If a closed control surface encloses a volume 𝑉 with an amount 𝑁 of
an ideal gas, at uniform temperature 𝑇, and the momentum flux is
orthogonal to the surface and uniform throughout, and there is no
matter flux through the surface, then the pressure 𝑝 is given by

𝑝 =
𝑅𝑁𝑇

𝑉
− 𝜇

1
𝑉

d𝑉
d𝑡 (9.9)

where d𝑉
d𝑡 is the rate of change of volume, 𝜆 is a viscosity coefficient,

and 𝑅 is the molar gas constant19, having universal value

𝑅 = 8.314 462 618 153 24 J/(mol · K) (exactly)

The equation above is called the ideal-gas law with viscosity.
If the surface has area 𝐴, the magnitude of the momentum flux is
therefore |𝑭 | = 𝑝𝐴.

Note that the formula above for pressure and momentum flux is only valid
for surfaces through which no matter flux occurs.

In the expression above for the pressure you may recognize the famous
“𝑝𝑉 = 𝑁𝑅𝑇” formula, called the ideal-gas law. This famous formula is
strictly speaking only valid when the ideal gas is at rest, which means that
its volume is not changing, so that d𝑉

d𝑡 = 0.
If the ideal gas is in motion, for instance expanding or contracting and

its volume 𝑉 changes with time, then additional terms must be added to
the famous “𝑝𝑉 = 𝑁𝑅𝑇” formula. This is what we see in the relation (9.9)
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above. In many cases these additional terms are extremely small and
therefore neglected.

The fact that the viscosity coefficients must be positive is a consequence
of the balance of entropy – the second law of thermodynamics – which we
shall discuss later.

9.5.2 Internal energy of an ideal gas

Next we discuss a constitutive relation that connects the amount of
internal energy in the control volume with the amount of ideal gas and its
temperature:

] Internal energy of an ideal gas

If a small control volume contains an amount 𝑁 of ideal gas at
uniform temperature 𝑇, then it also contains an amount of internal
energy 𝑈 given by

𝑈 = 𝐶 𝑁 𝑇 (9.10)

where the constant 𝐶 depends on the kind of ideal gas and is called
molar heat capacity.

This formula is very important: for an ideal gas, the absolute temperature
is a direct measure of the internal energy, so it can often be used as a proxy
for the latter.

- Validity of the internal-energy formula

• Keep in mind that the particular constitutive relation (9.10) is valid
for an ideal gas only. The internal energy of a generic material is
related to other quantities besides amount of matter and temperature.

• Some books express the formula above saying “the internal energy
of an ideal gas depends only on temperature”. This statement is
somewhat vague and easy to misunderstand. First, the internal energy
clearly “depends” also on the amount of matter 𝑁 . Second, if in some
application we express the amount of matter or the temperature
as functions of other quantities, such as volume, then the internal
energy also becomes a function of those quantities. The formula
above can be simply expressed as follow: if we know the amount
(and kind) of matter in a volume, and the temperature in that volume,
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then we also know the amount of internal energy therein.

9.5.3 Heat flux between sides at different temperatures

Lastly we discuss a constitutive relation that connects heat flux and
temperature. This relation applies to many physical phenomena and
materials: not only to ideal gases, but to many other fluids and solids as
well.

] Newton’s law of cooling

Consider a control surface of area 𝐴 and call its two sides 𝑎 and 𝑏. If
the matter on side 𝑎 has approximately uniform temperature 𝑇𝑎 , and
the matter on side 𝑏 has approximately uniform temperature 𝑇𝑏 , then
the heat flux 𝑄 in the 𝑎 → 𝑏 crossing direction is given by Newton’s
‘law of cooling’:

𝑄 = 𝐴ℎ (𝑇𝑎 − 𝑇𝑏) (9.11)

where ℎ is called the coefficient of heat transfer and depends on the
particular physical conditions of the matter on the two sides of the
surface. This coefficient is usually positive, and may depend on the
temperature.

The constitutive formula above with ℎ > 0 says that if the temperature on
side 𝑎 is larger than the one on side 𝑏, then a positive heat flux occurs from
𝑎 to 𝑏. In other words, positive heat flows from the hotter to the colder
side of the surface.

Newton’s law of cooling implies that we can approximately consider
temperature as having a jump or discontinuity between the two sides of
the surface. In situations where this approximation is too gross, another
constitutive equation is often used: Fourier’s law of heat conduction,
which we can write as

𝑄 = −𝐴𝑘
∂𝑇

∂𝑥

In this expression we imagine the surface to be orthogonal to the 𝑦𝑧

directions, and the crossing direction to be the positive 𝑥-direction. The
derivative ∂𝑇

∂𝑥
is the gradient of the temperature, expressing how much the

temperature changes from one point to another very close one.
Let’s make clear that Newton’s law of cooling and Fourier’s law are

not universal. There are physical situations and materials for which the
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heat flux is connected to temperature in more complex ways; and not only
to temperature, but also to momentum flux, matter flux, electromagnetic
quantities. Thermoelectric coolers20 are an example application of these
more complex constitutive relations for the heat flux.

- Heat can flow from cold to hot

Some texts say that “heat cannot flow from cold to hot”, and present
this vague statement as a consequence of, or equivalent to, the second
law of thermodynamics. This statement is actually not true, from several
points of view.

Heat can flow from cold to hot. An everyday example is a refrigerator:

It is obvious that, on a macroscopic scale, heat flows from a cold source
to a hotter sink in a refrigerator: thus the idea that the second law
requires heat to invariably flow from hot to cold is belied by the fact
that refrigerators do work. (Astarita 1990)

Even more interesting examples, in which Fourier’s law does not apply,
occur for materials such as polymers { add text and reference

9.5.4 Other common assumptions about ideal gases

Besides the particular constitutive relations for momentum flux, internal
energy, and heat flux just discussed, it is typically assumed that a not-too-
large volume of ideal gas has a negligible mass. This is usually a reasonable
assumption.

« Exercise 9.4

Calculate the mass of a litre, that is 10−3 m3, of air. Use the following
information:

• the molar mass 𝜌 of air is around 0.03 kg/mol; this means that ¾ § 7.2.1 page 124
an amount 𝑁 of air has mass 𝑚 ≈ 𝜌𝑁

• the pressure 𝑝 of air is around 105 N/m2

• take a thermodynamic temperature of air 𝑇 = 300 K (around
27 ◦C)

• pressure, volume, temperature, and amount of air are related
by the ideal-gas law (9.9). ¾ § 9.5.1 page 196
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If the mass 𝑚 of a volume of ideal gas is assumed to be zero, then four
other quantities are zero as well in that volume, at all times:

• the total momentum content 𝑷 = 𝑚𝒗
• the momentum supply from gravity 𝑮 = 𝑚𝒈
• the kinetic energy 1

2𝑚𝒗2

• the gravitational potential energy 𝑚𝑔𝑧

This assumption has an important consequence for the balance of
momentum of a control volume containing an ideal gas: we have

d𝑷(𝑡)
d𝑡
=0

= 𝑭(𝑡) + 𝑮(𝑡)
=0

=⇒ 𝑭(𝑡) = 0

that is, the total momentum influx is always zero. But note that this does not
mean that the momentum influx is zero everywhere across the closed control
surface; it only means that the momentum influxes of opposite parts of
the surface cancel out perfectly, as schematized in the side figure.

Remember that when we use the ideal-gas law (9.9), we are assuming
that any small surface of area 𝐴 of the control volume has a momentum
influx 𝑭𝐴 of magnitude

𝐹𝐴 = 𝐴 𝑝 = 𝐴
𝑅𝑁𝑇

𝑉
− 𝐴𝜇

1
𝑉

d𝑉
d𝑡

and directed inwards, according to the ideal-gas law (9.9). ¾ § 9.5.1 page 196
Another important consequence of assuming that a volume of ideal

gas has zero mass is that its total energy is purely internal energy:

𝐸 = 𝑈
=𝐶𝑁𝑇

+ 1
2𝑚𝒗2

=0

+𝑚𝑔𝑧

=0

= 𝐶𝑁𝑇

which also means that any energy influx or efflux only changes the internal
energy of the gas.

The masslessness assumption is of course inadequate in some condi-
tions like extremely fast compressions or expansions. In such conditions
also the ideal-gas law (9.9) must be modified.

9.6 Example applications: ideal gas and piston

9.6.1 Setup

One of the simplest system involving an ideal gas consists of a chamber of
variable volume, wherein an amount of ideal gas is enclosed, as illustrated
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in the side picture. To be more specific we consider a vertical tubular
chamber containing an amount 𝑁 of an ideal gas. The dark grey walls
are rigid, the yellow piston can move vertically and has constant mass
𝑚 and constant surface area 𝐴. The base of the piston is at a height 𝑧(𝑡)

z(t)

from the bottom of the chamber. The height and therefore the volume
𝑉(𝑡) = 𝐴 𝑧(𝑡) of the chamber can vary with time. We choose a one-
dimensional coordinate system 𝑧; vectors are positive when directed
upwards.

Since the piston has mass 𝑚, it also has momentum 𝑷 = 𝑚 𝑣, according
to the Newtonian constitutive relation for momentum, and it may have a
vertical gravity momentum supply 𝑮 = −𝑚 𝑔.

You may wonder why we need to consider a piston having mass. There
are two main reasons. First, in a real situation a piston does have a mass
that is non-negligible, compared with the mass of the gas. Second, the
assumption that the gas has no mass makes the balance of momentum ¾ § 9.5.4 page 199
become singular, as discussed in the previous section, and any description
and prediction of motion becomes therefore impossible – unless we add
mass somewhere else. The piston is effectively also a proxy for the mass of
the gas. We encountered an analogous situation with the spring-and-bodies
system.

9.6.2 Control volumes & surfaces

As usual we must choose a set of control volumes and surfaces to describe
the physical system, so that we can define the contents, fluxes, and supplies
of any relevant balance laws.

A natural choice is a control volume tightly wrapping the piston, and
another control volume coinciding with the chamber’s walls, containing
the gas. The two control volumes have one horizontal surface in common,
of area 𝐴, where the piston is in contact with the gas. Therefore there will
be fluxes of quantities between the two control volumes. By the symmetry ¾ § 4.3.1 page 59
of fluxes, the flux 𝑋 of any quantity from one volume to the other through
this surface, corresponds to a flux −𝑋 from the second volume to the first.

The control volume of the piston is rigid but movable; its position is
determined by the coordinate 𝑧(𝑡). The volume 𝑉(𝑡) of the chamber can
instead change with time, and is related to 𝑧(𝑡) by

𝑉(𝑡) = 𝐴 𝑧(𝑡) (9.12)
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Although this is a geometric relation, its deeper origin actually lies in the
law of conservation of matter, because the shapes and positions of these
control volumes are chosen so that matter is automatically conserved.

The vertical velocity 𝑣(𝑡) of the piston is given by

𝑣(𝑡) = d𝑧(𝑡)
d𝑡

and is positive if the piston is moving upwards. We also define the rate of
change of the volume 𝑉(𝑡), which turns out to be related to the velocity
𝑣(𝑡):

d𝑉(𝑡)
d𝑡 =

d𝐴 𝑧(𝑡)
d𝑡 = 𝐴 𝑣(𝑡) (9.13)

Let’s now see how the main balances apply to the chosen control
volumes of this physical system.

9.6.3 Conservation of matter

As mentioned in the previous section, the control volumes have been
chosen so as to automatically satisfy this conservation law. But this law
still appears very subtly through the geometric relations (9.12) and (9.13).
We therefore don’t need to worry about its balance, as long as we use those
geometric relations.

The constant amount of matter in the piston is such that its mass is 𝑚,
and the constant amount of ideal gas in the chamber is 𝑁 .

9.6.4 Balances of momentum

Piston. Let’s first apply this balance to the control volume of the piston.
The momentum content of the piston is 𝑃(𝑡) = 𝑚𝑣(𝑡), positive when

directed upwards.

The total momentum influx 𝐹(𝑡) is the sum of the fluxes through three
main surfaces:
Side: There usually are shear forces between the side of the piston and the ¾ § 4.6.3 page 71

walls of the chamber, but they are sometimes made negligible, for
instance by the use of lubricants. Here we assume that such forces
are zero.

Top: If there’s atmosphere above the piston, it exerts a downward force
𝐹atm approximately constant and equal to

𝐹atm = −𝐴 · 105 N/m2 (9.14)
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Bottom: The momentum flux through this surface is particularly import-
ant, because it’s momentum exchanged between the piston and the
gas. Denote by 𝐹pg(𝑡) the flux of momentum from the gas to the
piston, and 𝐹gp(𝑡) the flux of momentum from the piston into the gas.
Again by the symmetry of fluxes we have

𝐹pg(𝑡) = −𝐹gp(𝑡)

piston

gas

The momentum influx 𝐹gp(𝑡) for the gas, being a pressure, always
points inwards; in our coordinates it is always negative, downward.
The momentum influx 𝐹pg(𝑡) for the piston is therefore always positive,
upward.

For the moment we don’t have any constitutive relation for the influx
𝐹pg(𝑡), but we shall have one when we examine the control volume
of the gas.

The total influx of momentum, or surface force, for the piston is therefore

𝐹(𝑡) = 𝐹atm + 𝐹pg(𝑡) (9.15)

The gravitational supply of momentum to the piston must be taken
into account in our case, because the piston can move vertically. It would
have been neglected if the piston had moved horizontally instead. It is
given by

𝐺 = −𝑚 𝑔 (9.16)

The equations governing the motion of the piston are therefore

d𝑃(𝑡)
d𝑡 = 𝐹(𝑡) + 𝐺(𝑡)

𝑃(𝑡) = 𝑚𝑣(𝑡) 𝐹(𝑡) = 𝐹atm + 𝐹pg(𝑡) 𝐺 = −𝑚 𝑔

𝐹atm = −𝐴 · 105 N/m2

(9.17)

together with the relation between momentum influxes for piston and gas
at the common surface:

𝐹pg(𝑡) = −𝐹gp(𝑡) (9.18)
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Ideal gas. We are considering the ideal gas to be practically massless;
therefore its momentum content and gravitational supply are zero.

We saw that when the gas is considered massless, the balance of
momentum just becomes a requirement that the total flux of momentum ¾ § 9.5.4 page 199
be zero as well. Also recall that the momentum flowing through a small
surface, being a pressure, always has an inward orientation, orthogonal to
the surface.

The total momentum influx for the gas takes places through three main
surfaces:

Side: The influxes on opposite parts of the side surface are equal in
magnitude but opposite in orientation, and cancel each other out. The
total force through the side surface is therefore zero, and we don’t
need to keep track of it.

Top: The gas is in contact with the piston at the top surface. The influx
of momentum through the top, 𝐹gp, is therefore equal to minus the
momentum flux 𝐹pg from the gas to the piston. We wrote this in
formula (9.18):

𝐹pg(𝑡) = −𝐹gp(𝑡)

We have a constitutive relation for the pressure corresponding to this
influx: the ideal-gas law: ¾ § 9.5.1 page 196

𝐹gp(𝑡) = −𝐴 𝑝(𝑡) with 𝑝(𝑡) = 𝑅𝑁𝑇(𝑡)
𝑉(𝑡) − 𝜇

1
𝑉(𝑡)

d𝑉(𝑡)
d𝑡

The first equation has a minus sign because the influx always points
inward, therefore downward in our case. Note how this constitutive
relation brings into play the volume 𝑉(𝑡) and the thermodynamic
temperature 𝑇(𝑡) of the ideal gas, both of which can change with
time.

Bottom: It is usually assumed that the chamber containing the ideal gas
rests on some support or on the ground. Through the corresponding
surface there is therefore an efflux of downward-pointing momentum,
as it happened in our analysis of the books on a table. The momentum ¾ § 8.3.1 page 143
influx at the bottom is opposite to the influx at the top surface. We
therefore don’t need to keep track of the momentum flux at the
bottom.
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The only equations relevant to the momentum of the gas are therefore

𝐹gp(𝑡) = −𝐴 𝑝(𝑡) 𝑝(𝑡) = 𝑅𝑁𝑇(𝑡)
𝑉(𝑡) − 𝜇

1
𝑉(𝑡)

d𝑉(𝑡)
d𝑡 (9.19)

together with the relation between momentum influxes for piston and gas
at the common surface, equation (9.18).

9.6.5 Balances of energy

Piston. Let’s first consider the control volume of the piston.
We are treating the piston as a rigid body. It motion is therefore

completely determined by the balance of momentum. We would need ¾ § 9.4 page 192
to consider the balance of energy for the piston, if we were interested in
how its internal energy changes. But in the present problem this is of no
interest.

You may object: “but we expect the gas to exchange heat, possibly with
the piston as well”. This is a fully valid and intelligent objection! The gas is
indeed likely to exchange energy in the form of heat with the piston, unless
we insulate the surface between them and make the energy flux through it
adiabatic. We are silently making one or both of these assumptions: ¾ § 9.3.2 page 186

• the area 𝐴 between piston and gas is small compared to the rest of
the gas surface, and can therefore be neglected

• from the point of view of heat exchange (only), the piston can be
considered just like the rigid walls and not treated in a special way.

Ideal gas. The energy content 𝐸(𝑡) of the control volume containing the
ideal gas 9.5.4amounts only to its internal energy 𝑈(𝑡) – no kinetic or
potential energies – owing to the zero-mass assumption. And we do have
a constitutive relation for internal energy, which connects the latter to the ¾ § 9.5.2 page 197
amount 𝑁 of gas and to its thermodynamic temperature 𝑇(𝑡). The energy
content is therefore given by

𝐸(𝑡) = 𝑈(𝑡) = 𝐶𝑁𝑇(𝑡) (9.20)

Keep in mind that this constitutive relation can only be used when the
temperature and the amount of matter per volume are approximately the
same in every sub-volume.
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Recall that the energy influx 𝛷 through a surface of area 𝑎 that satisfies
the no-matter-flux and uniform-velocity conditions is given by the general
constitutive equation for energy flux, together with Newton’s law of ¾ § 9.3.2 page 186¾ § 9.5.3 page 198
cooling:

𝛷(𝑡) = 𝑄(𝑡) + 𝑭(𝑡) · 𝒗(𝑡) with 𝑄(𝑡) = 𝑎 ℎ [𝑇(𝑒𝑥𝑡) − 𝑇(𝑡)]

We are calling 𝑇(𝑒𝑥𝑡) the temperature of the walls and piston enclosing the
ideal gas, and assuming it to be constant.

The total energy influx 𝛷(𝑡) is the sum of fluxes through two main
surfaces:

Side: There could be a heat flux through the side walls. Note that as the
piston moves up or down, the area of the side walls changes, and this
must be taken into account in Newton’s law of cooling. For simplicity
let’s assume that the energy flux through the side walls is adiabatic.

The momentum flux 𝑭side through the side walls is orthogonal to
them, according to the ideal-gas law, and therefore horizontal. As the
piston moves up or down, we assume that the velocity 𝒗 of the gas is
approximately always vertical instead. This means that, on the side
walls, the mechanical power 𝑭side · 𝒗 is approximately zero, because
𝑭side and 𝒗 are orthogonal there.

We have therefore 𝛷side(𝑡) = 0.

Bottom: Let’s consider the possibility of a heat flux 𝑄bot through the
bottom surface. Since the area 𝐴 of this surface is constant, this flux is

𝑄bot(𝑡) = 𝐴 ℎ [𝑇(𝑒𝑥𝑡) − 𝑇(𝑡)]

The momentum influx 𝑭bottom through the bottom wall is directed
upward. The velocity of the gas is approximately assumed to be ver-
tical, and we also assume that it is zero at the bottom surface, because
the bottom surface is not moving. Otherwise it would mean either
that a vacuum is forming right above the surface, or that some gas is
passing through it. Neither of these possibilities are contemplated in
the present case; they would require different constitutive relations.
If the gas velocity at this surface is zero, then the mechanical power
is also zero.

The energy flux through the bottom surface is therefore

𝛷bot = 𝑄bot(𝑡) + 0
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Top: We could consider a heat flux through the top surface, between gas
and piston. Its formula would be similar to the one for the bottom
surface with same area 𝐴 but possibly different external temperature
(the temperature of the piston). For simplicity let’s assume that this
heat flux is zero.

The momentum influx 𝐹gp(𝑡) through the top surface is directed
downwards, and has magnitude given by the ideal-gas law. The
velocity of the ideal gas at this surface must be equal to that of the
surface itself, 𝑣(𝑡), otherwise there would either be a vacuum or gas
would pass through the piston. At the top surface there is therefore
a non-zero mechanical power 𝐹gp · 𝒗. The energy flux across this
surface is therefore

𝛷top = 0 + 𝐹gp(𝑡) · 𝑣(𝑡)

where 𝐹gp(𝑡) is given by formula (9.19).

The total energy influx into the control volume enclosing the ideal gas
is therefore

𝛷(𝑡) = 𝑄bot(𝑡) + 𝐹gp(𝑡) 𝑣(𝑡)
with

𝑄bot(𝑡) = 𝐴 ℎ [𝑇(𝑒𝑥𝑡) − 𝑇(𝑡)]

𝐹gp(𝑡) = −𝐴
[
𝑅𝑁𝑇(𝑡)
𝑉(𝑡) − 𝜇

1
𝑉(𝑡)

d𝑉(𝑡)
d𝑡

] (9.21)

We finally have all the equations to describe and numerically time-
integrate our physical system.

« Exercise 9.5

1. Use the basic script-writing strategy to write a script that simulates ¾ § 8.5 page 160
the system of ideal gas & piston.

2. What is the state of the system? ¾ § 8.5.2 page 164
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3. Simulate the system with the following numerical constants and
initial conditions:

𝑚 = 10 kg 𝑁 = 0.04 mol 𝐴 = 0.01 m2 𝑇(𝑒𝑥𝑡) = 296.15 K
𝐶 = 20 J/(mol · K) 𝜇 = 0.000 04 N s/m2 ℎ = 8000 J/(K s m2)

𝑔 = 9.8 N/kg 𝑅 = 8.314 J/(mol K)
𝑡0 = 0 s 𝑡1 = 1 s Δ𝑡 = 0.0001 s

𝑧(𝑡0) = 0.1 m 𝑣(𝑡0) = 0 m/s 𝑇(𝑡0) = 296.15 m/s

Plot the position 𝑧(𝑡) of the piston and the temperature 𝑇(𝑡) of the
ideal gas as functions of time. What do you observe?

4. Simulate again with the same values as before but a coefficient
of heat transfer ℎ = 0 J/(K s m2), that is, assuming that all energy
fluxes are adiabatic. Plot again position and temperature against
time. What do you observe?

5. Keeping all energy fluxes adiabatic, simulate now by setting the
viscosity coefficient 𝜇 = 400 N s/m2. What do you observe?

6. Play and simulate with other values!

Here is an example of Octave/MATLAB script for simulating the
system of ideal gas and piston and plotting 𝑧(𝑡) and 𝑇(𝑡):

Download
idealgas_piston.m21

1 %%% idealgas_piston.m
2 %% Simulation of ideal gas & mass piston in 1D
3 %% SI units used throughout
4 %% Coordinate z
5 %%%% Constants
6 m = 10; % mass of piston
7 N = 0.04; % amount of ideal gas
8 A = 0.1^2; % area of piston
9 g = 9.8; % gravitational acceleration

10 R = 8.31446261815; % molar gas constant
11 C = 20; % molar heat capacity
12 mu = 0.00004; % gas viscosity
13 h = 8000; % heat-transfer coefficient
14 Te = 273.15 + 23; % temperature of environment
15 Fatm = -100000*A; % force on piston by atmosphere
16 %%
17 G = -m*g; % gravity supply of momentum to piston
18 %%
19 t1 = 1; % final time
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20 dt = 0.0001; % time step
21 %%%% STATE: z, v, T; initial conditions
22 t = 0; % initial time
23 z = 0.15; % initial position of piston
24 v = 0; % initial velocity of piston
25 T = 273.15 + 23; % initial temperature of gas
26 %%
27 %% Plot & saving
28 %% adjust final time if not multiple of timestep
29 t1 = t1 + mod(t1-t,dt);
30 %% Save values of all quantities at some steps during the simulation,
31 %% for subsequente analysis or plotting
32 %% (saving at all timesteps could be too costly)
33 Nsaves = 200; % number of timepoints to save during the simulation
34 %% Calculate time interval for saving
35 dsave = (t1-t)/(Nsaves-1);
36 if abs(dsave) < (dt)
37 error(’time interval between saves is smaller than timestep’)
38 end
39 %% Initialize vectors to contain saved values
40 tSave = nan(Nsaves,1);
41 zSave = nan(Nsaves,1);
42 vSave = nan(Nsaves,1);
43 TSave = nan(Nsaves,1);
44 %% Save initial values
45 i = 1; % index that keeps count of savepoints
46 t0 = t;
47 tSave(1) = t;
48 zSave(1) = z;
49 vSave(1) = v;
50 TSave(1) = T;
51 %% Initialize plot
52 close all;
53 subplot(2,1,1)
54 cols = get(0, ’DefaultAxesColorOrder’);
55 plot(tSave(1), zSave(1), ’o’,’Color’,cols(1,:)); axis(’tight’);
56 xlabel(’time {\it t}/s’); ylabel(’position {\it z}/m’); hold on;
57 %%
58 %% Numerical time integration
59 %% loop
60 while t < t1
61 %% We need P,Fpg,z,v,E,Fgp,Qbot (G constant)
62 %% we have z,v,T
63 %% find P,Fpg,E,Qbot,Fgp using constitutive relations
64 P = m*v;
65 Fgp = -(N*R*T/z - A*mu*v/z);
66 Fpg = -Fgp;

209



9. Balance of energy 9.7. Surfaces of discontinuity

67 E = C*N*T;
68 Qbot = A*h*(Te - T);
69 %%
70 %% Drive forward in time
71 %% update momentum of piston
72 P = P + (Fpg + Fatm + G)*dt;
73 %% update position of piston
74 z = z + v*dt;
75 %% update internal energy of gas
76 E = E + (Qbot + Fgp*v)*dt;
77 %% update time
78 t = t + dt;
79 %%
80 %% Find new state for next iteration
81 %% We need z,v,T
82 %% we have P,z,E
83 %% find v,T using constitutive relations
84 v = P/m;
85 T = E/(C*N);
86 %%
87 %% Check whether to save & plot at this step
88 if min(abs([0 dsave] - mod(t-t0, dsave))) <= dt/2
89 i = i+1;
90 tSave(i) = t;
91 zSave(i) = z;
92 vSave(i) = v;
93 TSave(i) = T;
94 plot(t, z, ’o’,’Color’,cols(1,:));
95 pause(0.001);
96 end
97 end
98 %% Plot trajectory
99 plot(tSave,zSave,’-’,’Color’,cols(1,:));

100 subplot(2,1,2)
101 plot(tSave,TSave-273.15,’-’,’Color’,cols(2,:)); axis(’tight’);
102 xlabel(’time {\it t}/s’); ylabel(’temperature {\it T}/C’);

9.7 Surfaces of discontinuity

From our discussion about friction, we know what happens from the point ¾ § 8.2.6 page 138
of view of momentum when a person is pushing a heavy object, say a
crate, on the floor. The person is providing a constant influx of horizontal
momentum 𝐹p to the crate, but the floor is also providing a horizontal-
momentum influx 𝐹f, kinetic friction, having opposite orientation. Suppose
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that the influx by the person has same magnitude as the friction, 𝐹p = −𝐹f.
Then the crate will move with constant horizontal velocity 𝑣, because its
time-rate change of horizontal momentum is zero:

d𝑃𝑥(𝑡)
d𝑡 = 𝐹p + 𝐹f = −𝐹f + 𝐹p = 0 N .

Let us consider what happens from the point of view of energy. Through
the control surface where the person pushes the crate there’s an influx of
mechanical power 𝐹p · 𝒗. Let’s say that there’s no heat flux, so the energy
influx through that surface is

𝐸p = 𝐹p · 𝑣 > 0 .

This energy influx is positive because the force exerted by the person and
the velocity have the same orientation.

What about the contact surface of crate and floor? There should be an
energy flux through there too. In fact, there must be one if the internal
energy 𝑈 of the crate is constant in time: because the crate’s kinetic energy
1
2𝑚𝑣2 and gravitational potential energy are also constant, so the total
energy content is constant, and therefore the energy flowing in from the
push must flow out from somewhere else in this case. Obviously its flowing
through the surface between crate and floor. What kind of energy flux
occurs there? is it heat? or is it mechanical power?

We don’t have a constitutive relation for the energy flux 𝛷 between
crate and floor. The relation 𝛷 = 𝑄 + 𝑭 · 𝑣 does not apply there, because
the velocity of matter 𝑣 is not the same in the proximity of the surface. On
the upper side, the matter of the crate is moving with velocity 𝑣; but on
the lower side, the matter of the floor is at rest, with velocity zero.

This contact surface is an example of surface of discontinuity

] Surface of discontinuity

If the value of a physical quantity 𝑄 has two different values as we
consider points closer and closer to the two sides of a small control
surface, then the latter is called a surface of discontinuity for the
quantity 𝑄.

A control surface may be one of discontinuity for some quantity but not
for another. In our present example, for instance, we might have the same
temperature on the floor and at the bottom of the crate; the contact surface
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between them is then a surface of discontinuity for the velocity, but not for
the temperature.

We shall now learn a technique to deal with surfaces of discontinuity.
This technique allows us to extend the application of some constitutive
relations also to cases where they at first cannot be applied. Our discussion
of the technique is largely intuitive, but it could be made mathematically
rigorous.

Imagine to zoom in on the imaginary control surface that separates the
crate and the floor. Replace this surface with a very thin imaginary control
volume; see side picture. Two sides (light-red dashed lines) of this control
volume have the same extension as the original surface and are parallel to
it; but one of the lies completely within the crate, and the other completely
within the floor. The lateral sides (dark-red dashed lines) of the control
volume have a very small height ℎ.

Consider the fluxes of momentum for this control volume. They can be
separated (thanks to extensivity) into three contributions:

Surface within crate: Horizontal momentum, as friction (having leftward
orientation in the illustration), is coming from the floor, and is passed
on to the upper parts. Through this surface there is therefore an efflux
of momentum equal to 𝐹f.

All matter close to this surface has velocity 𝑣, on both sides, because
this surface is completely within the crate. For the energy efflux 𝛷crate
through this surface we can therefore use the constitutive relation

𝛷crate = 𝑄crate + 𝐹f · 𝑣

where 𝑄crate is a possible upward heat flux.

Surface within floor: Horizontal momentum, as friction (having rightward
orientation in the illustration), is coming from the crate, and is passed
on to the lower parts. Through this surface there is therefore an efflux
of momentum equal to −𝐹f.

All matter close to this surface has zero velocity, on both sides, because
this surface is completely within the floor. For the energy efflux 𝛷floor
through this surface we can therefore use the constitutive relation

𝛷floor = 𝑄floor

where 𝑄floor is a possible downward heat flux, and there is no
mechanical power owing to the zero velocity.
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Side surfaces: We imagine to take the height ℎ to be extremely small, so
small that the area of the side control surfaces is negligible. All fluxes
through these surfaces are, intuitively, negligible.

Now let’s examine the balance of energy for this thin control volume.
Owing to the very small height ℎ, the volume is extremely small. Therefore
the energy content 𝐸 and its time-rate of change d𝐸/d𝑡 are, intuitively,
negligible. The balance of energy then yields

d𝐸
d𝑡 = −𝛷crate −𝛷floor

0 J/s = −(𝑄crate + 𝐹f · 𝑣) −𝑄floor

from which we find
𝛷crate = −𝛷floor

𝑄crate + 𝐹f · 𝑣 = −𝑄floor

This is a very interesting result. Zoom out from the thin control volume,
so that it looks like the initial control surface between crate and floor. What
happens at this control surface is the following:

• The symmetry of fluxes is still valid: the energy flux from floor to crate,
𝛷crate, and the energy flux from crate to floor, 𝛷floor, are equal in
magnitude but opposite: 𝛷crate = −𝛷floor.

• However, the energy flux appears on one side (crate) of the surface as
heat flux plus mechanical power, whereas on the other side (floor) only as
heat flux.

This makes sense from a molecular point of view: roughly speaking,
the kinetic energy of the visible, coordinated motion of the molecules that
make up the crate, is transformed into kinetic energy of the microscopic
uncoordinated motion of the molecules that make up the floor. But note
the amazing fact that we obtained this result by applying the balance
laws, without invoking any molecular picture. In Chapter 11, about the
balance of entropy, we’ll also discover that at this kind of surfaces of
discontinuity, positive influx of mechanical power on one side can be
converted to positive outflux of heat on the other side – but the opposite
conversion cannot happen.
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Chapter 10

Balance of angular momentum

Around the world, around the world
Daft Punk 2005a

] Balance of angular momentum

Volume content: 𝑳 Flux: 𝝉 Supply: 𝑴

𝑳(𝑡1) = 𝑳(𝑡0) +
∫ 𝑡1

𝑡0

𝝉(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑴(𝑡)d𝑡

integral form

d𝑳(𝑡)
d𝑡 = 𝝉(𝑡) + 𝑴(𝑡)

differential form

(10.1)

{ To be written in a later version
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Chapter 11

Balance of entropy

Their various “second laws” sound more like warnings or
threats than principles of a rational science.

C. A. Truesdell, III 1984

11.1 Formulation and generalities

] Balance of entropy

Volume content: 𝑆 Flux: 𝛱

𝑆(𝑡1) ≥ 𝑆(𝑡0) +
∫ 𝑡1

𝑡0

𝛱(𝑡)d𝑡

integral form

d𝑆(𝑡)
d𝑡 ≥ 𝛱(𝑡)

differential form

(11.1)

The balance of entropy expresses what’s commonly called “second
law of thermodynamics”. Entropy and its balance are successfully used in
many applications, but our understanding of them and of their physical
foundation is still incomplete. This state of affairs is reflected in the many
and wildly different presentations of entropy and its balance: different
in wording, mathematical formulation, scope, and sometimes even in
physical consequences.

Many textbooks only present limited and special cases of properties and
uses of entropy and its balance, and unfortunately they often make these
limited, special cases appear as more general, or of broader application,
than they actually are. Such textbooks also typically restrict themselves
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11. Balance of entropy 11.1. Formulation and generalities

to situations where there the contents of quantities in a control volume
do not change with time, and the fluxes are zero. We call this a situation
of equilibrium. The discipline that studies equilibrium situations is called
thermostatics.

In these lecture notes, entropy and its balance are presented from a
point of view, actively developed and used since the 1960s, having the
following features:

• It has been used for many years in concrete technological applications
(some examples at NASA: Chang & Haddad 1971; Hughes et al. 1986;
Turon et al. 2004; Diosady et al. 2018; Kato & Rose 2020), and in the
study complex materials such as polymers and mixtures.

• It has led to new physical constitutive relations, or to the physical
and mathematical foundation of existing ones, from first principles.

• It is formulated with the same mathematics, and at the same mathem-
atical level, as the physics of matter, momentum, angular momentum,
energy, and electromagnetism.

• It includes time-dependent phenomena and is fully connected with
phenomena involving the other six basic quantities.

In the technical literature the entropy balance above, used in its full
generality, goes under the name of Clausius-Duhem inequality1.

11.1.1 Thermodynamic entropy and statistical entropy

One added difficulty is that entropy and its balance can also be approached
from a completely different direction, especially when we study physical
systems at small scales. It’s the approach of statistical mechanics2, which
considers physical situations in where we lack information about initial
conditions, or boundary conditions, or constitutive relations. In statistical
mechanics, a conceptually different entropy appears, not as a physical
quantity, but as a measure of our lack of information about the physical
system, in the strict technical sense of Information Theory3. Also this
entropy satisfies a balance law very similar to (11.1) above.

One of the reasons for the bewilderment which is sometimes felt at an
unheralded appearance of the term entropy is the superabundance of
objects which bear this name. On the one hand, there is a large choice of
macroscopic quantities (functions of state variables) called entropy, on the
other hand, a variety of microscopic quantities, similarly named, associated
with the logarithm of a probability or the mean value of the logarithm of a
density. Each one of these concepts is suited for a specific purpose. More
confusing, however, than the lack of imagination in terminology is the fact
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11. Balance of entropy 11.1. Formulation and generalities

that several of these distinct concepts, different in meaning and in numerical
value, may be significant in a single problem. (Grad 1961 § 1 p. 323)

We thus have a thermodynamic entropy and a statistical entropy.
Their fascinating relation is only partly understood, and still the object of
some debate. In the present notes we shall focus on thermodynamic entropy.

11.1.2 Entropy depends on the observation scale

The entropy content in a control volume and the entropy flux across
a control surface are not uniquely defined; that is, several choices are
possible, each one correct in a specific situation. This non-uniqueness is
actually two-fold. In the present section we discuss a first sense in which
entropy is non-unique; in a later section we’ll discuss a second sense.

First let’s make clear that the entropy content in a given control volume,
and the entropy flux through a given control surface, at a given coordinate
time, do not depend on the coordinate system chosen. In this regard they are
like the content & flux of matter, electric charge, and magnetic flux; and
unlike momentum, angular momentum, and energy.

On the other hand, entropy content & flux do depend on the detail and
scale of observation of a physical phenomenon. In this regard they are unlike
all other six fundamental quantities, whose total content and flux do not
depend on the observation scale.

As an example, take a control volume containing air. This control
volume could be studied, described, and measured in three different ways:
(a) as containing a continuous, fluid amount of matter of one kind: ‘air’;
(b) as containing a continuous, fluid mixture of amounts of matter of
different kinds: nitrogen, oxygen, and several others; (c) as containing a
bunch of molecules in motion.

The energy content measured within this control volume, at a particular
time instant, will be exactly the same in all three cases. What changes
among them is the division of this total energy into internal and kinetic, ¾ § 9.2.2 page 183
but the total is the same.

The entropy content assigned to this control volume, on the other hand,
will be different in each case.

A given object of study cannot always be assigned a unique value, its
“entropy”. It may have many different entropies, each one worthwhile. The
proper choice will depend on the interests of the individual, the particular
phenomena under study, the degree of precision available or arbitrarily
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11. Balance of entropy 11.2. The physical role of the balance of entropy

decided upon, or the method of description which is employed; and each
of these criteria is largely subject to the discretion of the individual. [. . .]

For another example we turn to aerodynamics. The existence of diffusion
between oxygen and nitrogen somewhere in a wind tunnel will usually be
of no interest. Therefore the aerodynamicist uses an entropy which does
not recognize the separate existence of the two elements but only that of
“air”. In other circumstances, the possibility of diffusion between elements
with a much smaller mass ratio (e.g., 238/235) may be considered quite
relevant. (Grad 1961 § 1 pp. 323, 325)

We shall now see that this peculiar dependence of entropy on the
details and scale of observation actually makes a lot of sense when we
understand how the entropy balance is used.

11.2 The physical role of the balance of entropy

11.2.1 Amazing variety of consequences

The entropy balance (11.1) has an apparent peculiarity, compared to the
general form of a balance law: it is not an equality ¾ § 5.5 page 90

. . . = . . .

but an inequality
. . . ≥ . . .

Why? and what are the consequences of this peculiarity?
Many texts and media try to summarize the meaning of the entropy

balance and its inequality sign in simple terms. But the reality is that this
inequality leads to an amazing variety of very different phenomena, and
cannot be summarized in words.

This should not be surprising. Take the balance of momentum for
example. It leads to all sorts of motions and deformations of objects, but
also to the stability of objects: from the extremely complicated motion of
the atmosphere to the stillness of a pen resting on a table. This balance
law could not be summarized in some simple sentence, like “objects
spontaneously fall downward”. First, such a sentence would be false in
many situations: just look at the motion of rocks expelled by a volcano,
or at cosmological expansion. Second, it would be useless for precise
predictions and numerical simulations.

The same remark holds true for the balance of entropy. This balance also
leads to a wild variety of very different physical consequences. The mixing
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11. Balance of entropy 11.2. The physical role of the balance of entropy

of two liquids can be said to be a consequence of the balance of entropy
(together with the other balances). But also the appearance of life on

The mixing of two liquids and
the growing of life are both
consequences of the second
law of thermodynamics.

Earth is a consequence of the balance of entropy; and all complex physical
mechanisms underlying life are consequences of the balance of entropy, too
(together with the other balances). Any simplistic summaries, like common
ones mentioning “tendency to disorder” or “spontaneously doing this or
that” or similar, are (a) simply false in many physical situations; (b) vague:
what does ‘to tend’ mean? how is ‘disorder’ defined and quantified? to
what initial values of position, velocity, and so on, does ‘spontaneous’
refer to? what’s ‘spontaneous’ and what’s not? (c) useless for quantitative
predictions.

11.2.2 Irreversibility

From a qualitative point of view, the inequality sign in the balance of
entropy expresses irreversibility; but we must understand this word in the
right way.

Consider first a generic balance or conservation law; let’s take conser-
vation of matter for instance:

𝑁(𝑡1) = 𝑁(𝑡0) +
∫ 𝑡1

𝑡0

𝐽(𝑡)d𝑡

Suppose a control volume contains an amount 20 mol of matter. During an
interval of time we provide a net flow of matter

∫ 𝑡1

𝑡0
𝐽(𝑡)d𝑡 = 3 mol into the

control volume. By the conservation law, at the end we have an amount
23 mol of matter in the control volume. This also means that in principle
we could revert to an amount of 20 mol by providing a negative amount of
the same flow as before, −3 mol. We can, in principle, change the matter
content in the volume between 20 mol and 23 mol by providing a net flow
of +3 mol or its opposite −3 mol. If we consider a balance with a supply,
the conclusion remains the same, if we invert also the sign of the supply.

Now consider the balance of entropy with a strict inequality:

𝑆(𝑡1) > 𝑆(𝑡0) +
∫ 𝑡1

𝑡0

𝛱(𝑡)d𝑡

Suppose a control volume contains an amount 20 J/K of entropy. During
an interval of time we provide a net flow of entropy

∫ 𝑡1

𝑡0
𝛱(𝑡)d𝑡 = 3 J/K into

the control volume. By the inequality above, at the end we cannot have
an amount 23 J/K of entropy in the control volume: it will be larger, say
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11. Balance of entropy 11.2. The physical role of the balance of entropy

23.1 J/K. If we want to revert to an entropy content of 20 J/K, then simply
reversing the total flow to −3 J/K won’t be enough. In fact, even −3.1 J/K
won’t be enough, because by the inequality above we must have

new entropy amount > 23.1 J/K − 3.1 J/K

and the new entropy content would be more than 20 J/K.
This is what we call irreversibility: we cannot revert to a given entropy

content in the volume by inverting the entropy flux.

- ‘Irreversibility’ does not mean that we cannot revert to a given content

Note that the example above does not imply that we can never have
again an entropy content of 20 J/K in the control volume. It is only
showing that we cannot achieve this by simply providing an entropy
flux opposite in sign to the flux we provided before. The original
entropy content can still in principle be re-established; but in order to
achieve this we need to providing a larger negative entropy flux than
before.

Analogously, the example does not imply that the entropy content of
a control volume can only increase. The entropy content can very well
decrease, provided an enough large negative entropy flow is provided.

In cases where the balance of entropy holds with an equal sign:

𝑆(𝑡1) = 𝑆(𝑡0) +
∫ 𝑡1

𝑡0

𝛱(𝑡)d𝑡

then we can of course revert to a given entropy content by inverting the
entropy flux.

] Reversible and irreversible processes

We call a physical change, process, transformation, or phenomenon
between two times 𝑡0 and 𝑡1 reversible if it satisfies the balance of
entropy with an equal ‘=’ sign, at least approximately.

We call it instead irreversible if it satisfies the balance of entropy
with a strict inequality ‘<’ sign.

There is no clear-cut division between ‘reversible’ and ‘irreversible’
processes. A process may lead to an entropy content that is slightly
larger than the one we would have obtained with a perfectly re-
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11. Balance of entropy 11.2. The physical role of the balance of entropy

versible process; but the difference is so small, with respect to our
approximations, that it can be neglected. In this case the process is
called reversible for all practical purposes. Arguably there are in fact
no exactly reversible processes in nature.

11.2.3 Entropy balance as a meta-law

One important consequence of the inequality sign in the balance of entropy
is that this balance cannot be used in a numerical-time-integration scheme. ¾ § 6.3 page 108
If we rewrite it in an approximate form for a short timestep Δ𝑡:

𝑆(𝑡 + Δ𝑡) ≳ 𝑆(𝑡) +𝛱(𝑡)Δ𝑡

this relation doesn’t tell us the value of the entropy content at time 𝑡 + Δ𝑡,
but only an approximate minimum value that this content could have. As
far as we know, it could be much larger than this minimum. For example,
if a closed control surface at some time 𝑡 contains an amount of entropy
𝑆(𝑡) = 10 J/K, and the net entropy flux at that time is 𝛱(𝑡) = 2 J/(K s), then
we can say that a time Δ𝑡 = 0.1 s after the content should be

𝑆(𝑡 + Δ𝑡) ≳ 𝑆(𝑡) +𝛱(𝑡)Δ𝑡
≳ 10 J/K + 2 J/(K s) · 0.1 s
≳ 10.2 J/K

This mean that maybe 𝑆(𝑡 +Δ𝑡) ≈ 10.2 J/K, or maybe 𝑆(𝑡 +Δ𝑡) = 1000 J/K,
or maybe even larger values – the entropy balance doesn’t really tell us.
This law, therefore, apparently does not allow us to “drive forward” a
physical system.

In fact, when we simulate or predict the behaviour of any physical
system, it turns out that we can in principle always do without the balance
of entropy. We only need to use the other six balances together with any
relevant constitutive equations. The entropy content 𝑆 itself may appear in
these constitutive relations, and is often a useful quantity. But the balance
of entropy is not used.

What is its physical role of this balance law, then?
The answer is that the balance of entropy is a ‘meta-law’. It is not a law

directly about physical phenomena, but a law about laws of physical phe-
nomena. Roughly speaking, this meta-law determines which constitutive
relations are physically admissible and which are not admissible.
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11. Balance of entropy 11.2. The physical role of the balance of entropy

The subtlety arises, of course, because the second law is an inequality, and
therefore only other inequalities can be deduced from it by a purely algebraic
procedure. However, [. . .] one can in fact deduce from the second law, when
coupled with appropriate constitutive assumptions, consequences which
are equations, not inequalities; the procedure is more a logical than an
algebraic one. (Astarita 1990 § 2.4 p. 46)

In very simple cases this meta-law leads to restrictions on the values
of physical coefficients. For example, it’s a consequence of the balance
of entropy that the viscosity coefficient 𝜇 in the ideal-gas law and the ¾ § 9.5.1 page 196
coefficient of heat transfer ℎ in Newton’s law of cooling must be positive. ¾ § 9.5.3 page 198
We shall see a simple example of how this kind of restrictions come about.

But in more complex cases this meta-law leads to much more powerful
results. For example, it can dictate that some constitutive relations cannot
contain particular physical quantities as variables. The discussion of these

£ If you feel adventurous,
check the simple examples
discussed in Astarita’s book,
in the section cited in the
quote, or in Chapter 2 of Sam-
ohýl & Pekař 2014.

complex and more fascinating cases unfortunately requires much more
advanced mathematics, so we can only get a dim glimpse of them in these
notes.

Considering the role of the entropy balance as a meta-law that decides
which constitutive relations are admissible and which aren’t, and con-
sidering that constitutive relations heavily depend on the scales of time ¾ § 5.6 page 98
& space and on the measurement precision with which we describe a
physical phenomenon, it then makes sense that the entropy content and
the entropy flux should also depend on details and scale of observation, ¾ § 11.1.2 page 218
as discussed in a previous section.

11.2.4 Entropy depends on a reference state

Besides depending on the observation scale, entropy additionally depends ¾ § 11.1.2 page 218
on the choice of a reference state of a control volume; that is, on a particular ¾ § 8.5.2 page 164
set of values for the minimal number of quantities needed to predict what
will happen in the control volume. The reference state is a state to which
we assign zero entropy by convention.

The entropies that can be
defined for an ordinary pa-
per clip do not differ simply
by a constant.

For many physical phenomena and materials, a change of the reference
state simply shifts all entropy values by a constant amount, so our entropy
is defined except for a ‘zero’ of its measurement scale. But there are
also important and quite common phenomena and materials for which a
change of reference state leads to a different entropy function – not just the
addition or subtraction of a constant. An ordinary paper clip is a simple
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11. Balance of entropy 11.3. Examples of constitutive relations

example. The non-uniqueness of entropy is also a consequence of the
peculiar inequality sign in the balance of entropy.

‘First, there are bodies which
have two entropies [. . .] whose
difference is nonconstant [. . .].
Second, it can happen that the
body does not have a smooth en-
tropy. These two peculiarities are
related to the fact that for the en-
tropy we have only an inequal-
ity.’ Šilhavý 1997 § 7.6

But this non-uniqueness is not a problem. Any one of the entropies,
defined with respect to different reference states, can be used for instance
as one of the quantities that define the state of the physical system. The
prediction of the physical system’s behaviour will be the same.

11.3 Examples of constitutive relations

We have emphasized that the balance of entropy (together with the
other balances) imposes restrictions on the possible constitutive relations
between the physical quantities used to model a physical phenomenon.
Among such quantities are also the entropy content 𝑆 and entropy flux 𝛱
which enter this very balance (if you think about it, it’s extremely intriguing
that a physical law manages to determine the expressions of the very terms
it contains).

11.3.1 Entropy flux, heat, temperature

The most important constitutive relation for entropy is the one that relates
its flux 𝛱 with the heat flux 𝑄 and the thermodynamic temperature 𝑇. ¾ § 9.3.2 page 186

] Entropy flux

Consider a control surface, possibly moving, with an assigned cross-
ing direction, and satisfying the following conditions:
• the surface is in contact with matter on both sides
• no flux of matter through the surface
• no chemical reactions (transformations between matter types)

occur across the surface
• no electromagnetic phenomena involved
• the temperature 𝑇 is the same on every part of the surface
• the heat flux through the surface is 𝑄
Then across the control surface there is an entropy flux 𝛱 given by

𝛱 =
𝑄

𝑇
(11.2)

This relation has wide applicability, but pay close attention to the conditions
for its validity. In particular, it is not correct if there is a net flux of matter
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through the surface. Nor is it correct if there are opposite fluxes of different
kinds of matter that cancel each one out – so the net flux is zero – but
chemical reactions are occurring between these different matter kinds. It
is also important that the temperature be well-defined and be uniform,
that is, have the same value, on the surface and at least in a small spatial
region on each side of the surface. If the temperature is not uniform, the
surface is usually divided into smaller parts, so that the temperature can
be considered uniform in each part separately, and then the total flux is
obtained by summation, thanks to extensivity. ¾ § 3.1 page 33

« Exercise 11.1

1. At a particular time instant, across a closed control surface there
is a flux of energy as illustrated in the side picture:

• through one part of the surface there is a heat influx of 200 J/s
and no flux of mechanical power; the temperature around that
part is 400 K

• through one part there is a 40 J/s heat efflux and a 50 J/s efflux
of mechanical power; the temperature around that part is 150 K

• through one part there is a 10 J/s heat efflux and no flux mech-
anical power; the temperature around that part is 100 K

• through one part there is a 30 J/s influx of mechanical power
and no heat flux; the temperature around that part is 100 K

• through the rest of the surface there are no energy fluxes of any
kind.

Each part of the surface satisfies the conditions of the constitutive
relation (11.2).

How much is the net influx of entropy through the whole closed
control surface?

2. Suppose that through a particular control surface, at a given time,
there is zero net energy flux. The surface satisfies the conditions
of the constitutive relation (11.2). Can we say that the entropy flux
through that surface is also zero?
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11.3.2 Entropy of an ideal gas

In Chapter 9 we discussed constitutive relations for the pressure 𝑝 and the ¾ § 9.5 page 194
internal energy 𝑈 of an control volume containing an ideal gas:

𝑝 =
𝑅𝑁𝑇

𝑉
− 𝜇

1
𝑉

d𝑉
d𝑡 , 𝑈 = 𝐶 𝑁 𝑇

where 𝑁 is the amount of gas, 𝑇 the temperature of the gas, assumed
uniform, 𝑉 is the volume, and 𝑅, 𝐶, 𝜇 are the molar gas constant, molar
heat capacity, and viscosity coefficient.

Under the same conditions of validity for the constitutive relations
above, we also have a constitutive relation for the entropy content 𝑆 of the
volume of ideal gas:

] Entropy of an ideal gas

If a small control volume contains an amount 𝑁 of ideal gas at
uniform temperature 𝑇, then it also contains an amount of entropy 𝑆

given by

𝑆 = 𝐶𝑁 ln 𝑇

𝑇0
− 𝑅𝑁 ln 𝑁/𝑉

𝑁0/𝑉0
(11.3)

where 𝑇0, 𝑁0, 𝑉0 are arbitrary reference temperature, amount of
matter, and volume.

11.4 Examples of applications

11.4.1 Thermal engines

Recall that we are completely free in our choice of a control volume: it ¾ § 4.1 page 54
can have any size and shape, and can move and deform in any way. This
freedom is extremely powerful: we can for example imagine a control
volume that wraps a very complex engine having moving parts. Through
the surface of this control volume we can keep track of any exchanges
of matter, momentum, energy between the engine and its exterior; in
particular exchanges of heat and of mechanical power. And whatever
happens within the engine, that is, within our imaginary control volume,
must obey the seven universal balance laws.

This powerful freedom in choosing a control volume, when combined
with the balances of entropy and energy, can lead to amazingly general
physical results. Thanks to these results we can for example prevent waste
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of efforts in technological ideas that would eventually turn out to be
unfeasible. Let us see a couple of examples.

First of all let’s define what we mean by ‘thermal engine’: a device that
can absorb or emit both heat and mechanical work, and that can operate
repeatedly, in principle forever. A device operated by an electric battery,
for instance, is not an engine, because it will cease operating once the
battery is exhausted. The ability to operate forever means that at recurring
points in time the device must be find itself in the same state, so as to start
over.

A thermal engine can also receive or release matter, momentum, angular
momentum, and electromagnetic quantities.

11.4.2 An impossible thermal engine

Would it be possible to build a thermal engine that takes some energy in
the form of heat from an inlet at constant temperature, and releases energy
in the form of work, say by lifting an object?

The operation of such an engine is captured in the side picture. Imagine
to wrap the engine, no matter how complex it could be, in a closed control
surface, defining a control volume. A part (red) of the control surface
delimits the inlet through which the engine receives a heat flux 𝑄(𝑡),
possibly variable in time. The temperature 𝑇 at the inlet is constant in
time. Another part (blue) of the control surface delimits the movable
components through which the engine is releasing mechanical power
−𝑭(𝑡) · 𝒗(𝑡), where 𝑭(𝑡) is the influx of momentum through that part, and
𝒗(𝑡) is the velocity of the matter set into motion; both can vary with time.
The expression for the mechanical power has a minus sign because it’s the
power we receive, so it’s an efflux for the engine. Through the rest (grey) of
the control surface there are no exchanges of heat, but there may be fluxes of
matter, momentum, angular momentum, and electromagnetic quantities;
but we require that over an operation cycle the overall amount of each
such flow be zero. Only the fluxes 𝑦𝑄 and −𝑭 · 𝒗 can have a non-zero net
amount over an operation cycle.

The engine starts a cycle at time 𝑡0 and operates until time 𝑡1, at which
time its state is exactly the same as at the initial one, the cycle is complete,
and the engine is ready to start a new operation cycle. In a cycle, the total
amount of heat Δ𝐻 we provide to the engine and the total amount of work
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Δ𝑊 we receive from it are given, with a shorter notation, by

Δ𝐻 :=
∫ 𝑡1

𝑡0

𝑄(𝑡)d𝑡 Δ𝑊 := −
∫ 𝑡1

𝑡0

𝑭(𝑡) · 𝒗(𝑡) d𝑡

The net amount of energy flowing into the control volume between 𝑡0 and
𝑡1 is therefore∫ 𝑡1

𝑡0

𝛷tot(𝑡)d𝑡 =
∫ 𝑡1

𝑡0

𝑄(𝑡)d𝑡 +
∫ 𝑡1

𝑡0

𝑭(𝑡) · 𝒗(𝑡) d𝑡 ≡ Δ𝐻 − Δ𝑊

Let’s see what the balance of energy says about such an engine. We
have

𝑈(𝑡1) = 𝑈(𝑡0) +
∫ 𝑡1

𝑡0

𝛷tot(𝑡)d𝑡

= 𝑈(𝑡0) + Δ𝐻 − Δ𝑊

But the state of the engine at 𝑡1 is the same as at 𝑡0, therefore the energy
content at these two times must be the same: 𝑈(𝑡1) = 𝑈(𝑡0). The equation
above simplifies to

Δ𝑊 = Δ𝐻 (11.4)
that is, the mechanical work produced in a cycle must be equal to the total
amount of heat provided in a cycle, as expected. The balance of energy
doesn’t require more than this.

According to the balance of energy this engine is therefore admissible.
Let’s see what the balance of entropy says. We have

𝑆(𝑡1) ≥ 𝑆(𝑡0) +
∫ 𝑡1

𝑡0

𝛱(𝑡)d𝑡

≥ 𝑆(𝑡0) +
∫ 𝑡1

𝑡0

𝑄(𝑡)
𝑇

d𝑡

≥ 𝑆(𝑡0) +
Δ𝐻

𝑇

The last step, where the temperature 𝑇 goes out of the time integral, is
possible because the temperature is constant, according to our engine
design. Also in this case the initial and final entropy content must be the
same: 𝑆(𝑡1) = 𝑆(𝑡0). The equation above simplifies to

Δ𝐻

𝑇
≤ 0 =⇒

because 𝑇 > 0
Δ𝐻 ≤ 0 (11.5)

This is a remarkable result: it’s impossible to give a positive net amount of heat,
in a cycle, to such an engine; otherwise the entropy-balance law would be
broken.
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Together with the conclusion (11.4) from the balance of energy, we also
obtain

Δ𝑊 ≤ 0 (11.6)

that is, it’s impossible to receive a positive net amount of work, in a cycle, from
such an engine.

We conclude that an engine designed in this way is physically im-
possible. No matter which kind of ingenious technology or materials we
tried to use, we would never be able to cyclically gain positive mechanical
work from it.

Note that the opposite use, though, is physically possible: we can,
cyclically, provide positive work to the engine and get heat out at a
constant temperature. Indeed this is how most heating systems operate.

It’s important to understand correctly what’s possible and what’s
not. We can of course provide positive heat to the device, at a constant
temperature, as much as we please. The result above says that we won’t
be able to return the device to its initial state as long as we do so. The
incompatibility is between:

• positive net amount of heat
• constant temperature
• cyclic operation
But note that the converse is possible: we can absorb a net amount of

heat from the device, at constant temperature, as much as we please, and
return the device to its initial state.

We can therefore try a different design, where one of the conditions
above is dropped. The ability to operate cyclically is very convenient, so
let’s try to keep it. What happens if we let heat be exchanged at different
temperatures?

11.4.3 A possible thermal engine, with limitations

Let modify our original design. Now we allow the exchange of heat to
happen at two different temperatures. This could be done by changing
the temperature of one part of the surface over time (within a cycle), or
by allowing heat to be exchanged at two different inlets, having constant
but different temperatures. We choose the second option as it’s easier to
analyse and lead to the same results as the first.

The new engine design is represented in the side picture. An influx of
heat 𝑄+(𝑡) occurs through a part (dark red) of the closed control surface
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at constant temperature 𝑇+; another influx of heat 𝑄−(𝑡) occurs through
another part (light red) of the surface at constant temperature 𝑇−. We
assume

𝑇+ > 𝑇−

but for the moment we are not making assumptions about 𝑄+() and 𝑄−(𝑡);
we only require that the net amount of heat provided to the engine in
a cycle be positive. Through another, movable part (blue) of the control
surface the engine is releasing mechanical power −𝑭(𝑡) · 𝒗(𝑡). Through the
rest (grey) of the surface there may be fluxes of matter and other quantities,
except heat; but the net flow of such quantities is zero over an operation
cycle.

We consider a cycle of the engine between times 𝑡0, 𝑡1. Employ again
the shorter notation for the time-integrated fluxes:

Δ𝐻+ :=
∫ 𝑡1

𝑡0

𝑄+(𝑡)d𝑡 Δ𝐻− :=
∫ 𝑡1

𝑡0

𝑄−(𝑡)d𝑡

Δ𝑊 := −
∫ 𝑡1

𝑡0

𝑭(𝑡) · 𝒗(𝑡) d𝑡

so that the net amount of energy flowing into the control volume in this
cycle is ∫ 𝑡1

𝑡0

𝛷tot(𝑡)d𝑡 = Δ𝐻+ + Δ𝐻− − Δ𝑊

The balance of energy applied to the engine’s control volume requires
that

𝑈(𝑡1) = 𝑈(𝑡0) + Δ𝐻+ + Δ𝐻− − Δ𝑊

and since 𝑈(𝑡1) = 𝑈(𝑡0) we find

Δ𝑊 = Δ𝐻+ + Δ𝐻− (11.7)

That is, the net work released in a cycle must be equal to the net heat
provided, as expected. Note that we would like

The flux of entropy for the engine’s control volume is∫ 𝑡1

𝑡0

𝛱tot(𝑡)d𝑡 =
∫ 𝑡1

𝑡0

𝑄+(𝑡)
𝑇+ d𝑡 +

∫ 𝑡1

𝑡0

𝑄−(𝑡)
𝑇− d𝑡 ≡ Δ𝐻+

𝑇+ + Δ𝐻−

𝑇−

The balance of entropy applied to the control volume therefore says

𝑆(𝑡1) ≥ 𝑆(𝑡0) +
Δ𝐻+

𝑇+ + Δ𝐻−

𝑇−
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and since 𝑆(𝑡1) = 𝑆(𝑡0) in this operation cycle we finally find

Δ𝐻+

𝑇+ + Δ𝐻−

𝑇− ≤ 0

For this new engine, the entropy balance is not saying that the net amount
of heat provided in a cycle cannot be positive. It looks like the new engine
design might work.

With a little algebra, and recalling that a thermodynamic temperature
𝑇− > 0, we can rewrite the inequality above as follows:

Δ𝐻− ≤ −𝑇
−

𝑇+Δ𝐻
+ (11.8)

The fraction 𝑇−/𝑇+ is positive; so if Δ𝐻+ is positive, Δ𝐻− must be negative,
or vice versa. The entropy balance is therefore saying that in a cycle, if
the net amount of heat exchanged at one inlet is positive, then the net amount
exchanged at the other inlet must be negative.

We wished to have a positive net amount of heat provided to the engine
in a cycle, that is,

Δ𝐻+ + Δ𝐻− > 0

This is indeed feasible! If Δ𝐻+ is positive, then Δ𝐻− is negative, but its
absolute value is less than Δ𝐻+, because in formula (11.8) the fraction
𝑇−/𝑇+ is less than 1. Suppose for instance that Δ𝐻+ = 8000 J, 𝑇+ = 400 K,
𝑇− = 100 K. Formula (11.8) then requires

Δ𝐻− ≤ −100 K
400 K · 8000 J = −2000 J

and it would be possible to have, say, Δ𝐻− = −3000 J. The net heat amount
provided to the engine in a cycle would then be 8000 J − 3000 = + 5000 J.
According to the requirement (11.7) from the balance of energy, in a
cycle we would then gain a net work of 5000 J. The new engine design is
successful!

An interesting question arises: how much work, in a cycle, can we
squeeze out of our engine? We see that we are giving an energy amount
Δ𝐻+ as heat to the engine, and the engine is returning to us Δ𝐻− as heat
and Δ𝑊 as work. Can we somehow minimize Δ𝐻− and maximize Δ𝑊?

It turns out that the balance of entropy also tells us what’s the maximal
amount of work that we can obtain from the engine. Combine together the
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requirements (11.7) and (11.8), by substituting Δ𝐻− from the latter into
the former:

Δ𝑊 = Δ𝐻+ + Δ𝐻− and Δ𝐻− ≤ −𝑇
−

𝑇+Δ𝐻
+ =⇒ Δ𝑊 ≤ Δ𝐻+ − 𝑇−

𝑇+Δ𝐻
+

by using a little algebra we finally find the maximal work obtainable:

Δ𝑊 ≤
(
1 − 𝑇−

𝑇+

)
Δ𝐻+ (11.9)

The factor 1 − 𝑇−/𝑇+ is called the efficiency of the thermal engine. Since
thermodynamic temperature is positive, the efficiency cannot be greater
than 1.

In order to maximize the amount of work Δ𝑊 obtained and minimize
the amount of heat Δ𝐻− received back from the engine, we must try to
make the efficiency as close to 1 as possible. Looking at the fraction 𝑇−/𝑇+

we see that there are two main ways, both of which can be pursued:
• Lower as much as possible, close to 0 K, the temperature 𝑇− at which

heat is received back from the engine
• Increase as much as possible the temperature 𝑇+ at which heat is

provided to the engine.

It is amazing that we can say, beforehand, how much work we can at
most get from such an engine, without even knowing or needing to specify
what kind of technology, materials, and way of operation it could be based
upon. You see the strength of the consequences that the little “≥” sign in
the balance of entropy can have.

The thermal-engine example above also hints at the role of the balance
of entropy as a meta-law about constitutive relations. In a real application
and construction of an engine, the heat flux 𝑄 and momentum flux 𝑭
will be concretely specified by constitutive relations; think for instance of
Newton’s law of cooling for 𝑄 or the ideal-gas law for 𝑭 . But if a limitation ¾ § 9.5 page 194
such as the maximal work efficiency (11.9), which we can rewrite in full as

−
∫ 𝑡1

𝑡0

𝑭(𝑡) · 𝒗(𝑡) d𝑡 ≤
(
1 − 𝑇−

𝑇+

) ∫ 𝑡1

𝑡0

𝑄+(𝑡)d𝑡 ,

is to be universally valid, then the specific mathematical formulae for 𝑄
and 𝑭 cannot be whatever. In fact they turn out to have severe restrictions.

11.4.4 Constraints on constitutive relations for friction

{ To be written
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URLs for chapter 11

1. https://encyclopediaofmath.org/wiki/Clausius-Duhem_inequality
2. https://plato.stanford.edu/entries/statphys-statmech/
3. https://www.britannica.com/science/information-theory
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