31  Final inference formulae

Published

2024-09-05

We finally have all theoretical ingredients and formulae to use the probability calculus for drawing many kinds of inferences about some units in a population, given observations from other units. Keep in mind the minimal assumptions we are making in these formulae – which also underlie all machine-learning algorithms for “supervised” and “unsupervised” learning:

In the next part, An Optimal Predictor Machine, we shall computationally implement these formulae and use them in a couple of simple and not-so-simple inference problems.

Here we collect the main formulae for exchangeable beliefs and tasks about

We still use the general scenario and notation of § 27.3.


All inferences about units of a population rely on the joint probability for any number of units, which is given by the following formula (§ 30.1):

Main formulae for some inference tasks under exchangeable beliefs
de Finetti’s representation

\[ \begin{aligned} &\mathrm{P}\bigl( \color[RGB]{68,119,170}Z_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{N+1} \mathbin{\mkern-0.5mu,\mkern-0.5mu} Z_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_N \mathbin{\mkern-0.5mu,\mkern-0.5mu} \dotsb \mathbin{\mkern-0.5mu,\mkern-0.5mu} Z_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_1 \color[RGB]{0,0,0}\pmb{\nonscript\:\big\vert\nonscript\:\mathopen{}} \mathsfit{I}\bigr) \\[2ex] &\qquad{}= \sum_{\boldsymbol{f}} f({\color[RGB]{68,119,170}Z\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{N+1}}\color[RGB]{0,0,0}) \cdot f({\color[RGB]{68,119,170}Z\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{N}}\color[RGB]{0,0,0}) \cdot \, \dotsb\, \cdot f({\color[RGB]{68,119,170}Z\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{1}}\color[RGB]{0,0,0}) \cdot \mathrm{P}(F\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}\boldsymbol{f}\nonscript\:\vert\nonscript\:\mathopen{} \mathsfit{I}) \end{aligned} \]

or, in terms of predictand \({\color[RGB]{68,119,170}Y}\) and predictors \({\color[RGB]{68,119,170}X}\) variates:

\[ \begin{aligned} &\mathrm{P}\bigl( \color[RGB]{68,119,170}Y_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{N+1} \mathbin{\mkern-0.5mu,\mkern-0.5mu} X_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{N+1} \mathbin{\mkern-0.5mu,\mkern-0.5mu} \dotsb \mathbin{\mkern-0.5mu,\mkern-0.5mu} Y_{1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{1} \mathbin{\mkern-0.5mu,\mkern-0.5mu} X_{1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{1} \color[RGB]{0,0,0}\pmb{\nonscript\:\big\vert\nonscript\:\mathopen{}} \mathsfit{I}\bigr) \\[2ex] &\qquad{}= \sum_{\boldsymbol{f}} f({\color[RGB]{68,119,170}Y\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{N+1} \mathbin{\mkern-0.5mu,\mkern-0.5mu}X\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{N+1}}) \cdot \, \dotsb\, \cdot f({\color[RGB]{68,119,170}Y\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{1} \mathbin{\mkern-0.5mu,\mkern-0.5mu}X\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{1}}) \cdot \mathrm{P}(F\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}\boldsymbol{f}\nonscript\:\vert\nonscript\:\mathopen{} \mathsfit{I}) \end{aligned} \]

\(\mathrm{P}(F\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}\boldsymbol{f}\nonscript\:\vert\nonscript\:\mathopen{}\mathsfit{I})\) is problem-dependent and must be specified by the agent.



Inferences about all variates \({\color[RGB]{68,119,170}Z}\) of a new unit, given observed units

\[ \begin{aligned} &\mathrm{P}\bigl( {\color[RGB]{238,102,119}Z_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{N+1}} \pmb{\nonscript\:\big\vert\nonscript\:\mathopen{}} \color[RGB]{34,136,51}Z_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_N \mathbin{\mkern-0.5mu,\mkern-0.5mu} \dotsb \mathbin{\mkern-0.5mu,\mkern-0.5mu} Z_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_1 \color[RGB]{0,0,0}\mathbin{\mkern-0.5mu,\mkern-0.5mu}{\mathsfit{I}} \bigr) \\[2ex] &\qquad{} = \frac{ \mathrm{P}\bigl( \color[RGB]{238,102,119}Z_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{N+1} \color[RGB]{0,0,0}\mathbin{\mkern-0.5mu,\mkern-0.5mu} \color[RGB]{34,136,51}Z_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_N \mathbin{\mkern-0.5mu,\mkern-0.5mu} \dotsb \mathbin{\mkern-0.5mu,\mkern-0.5mu} \color[RGB]{34,136,51}Z_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_1 \color[RGB]{0,0,0}\pmb{\nonscript\:\big\vert\nonscript\:\mathopen{}} {\mathsfit{I}} \bigr) }{ \sum_{\color[RGB]{170,51,119}z} \mathrm{P}\bigl( {\color[RGB]{238,102,119}Z_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}{\color[RGB]{170,51,119}z}} \mathbin{\mkern-0.5mu,\mkern-0.5mu} \color[RGB]{34,136,51}Z_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_N \mathbin{\mkern-0.5mu,\mkern-0.5mu} \dotsb \mathbin{\mkern-0.5mu,\mkern-0.5mu} Z_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_1 \color[RGB]{0,0,0}\pmb{\nonscript\:\big\vert\nonscript\:\mathopen{}} {\mathsfit{I}} \bigr) } \\[3ex] &\qquad{} = \frac{ \sum_{\boldsymbol{f}} f({\color[RGB]{238,102,119}Z\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{N+1}}\color[RGB]{0,0,0}) \cdot f({\color[RGB]{34,136,51}Z\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{N}}\color[RGB]{0,0,0}) \cdot \, \dotsb\, \cdot f({\color[RGB]{34,136,51}Z\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{1}}\color[RGB]{0,0,0}) \cdot \mathrm{P}(F\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}\boldsymbol{f}\nonscript\:\vert\nonscript\:\mathopen{} \mathsfit{I}) }{ \sum_{\boldsymbol{f}} f({\color[RGB]{34,136,51}Z\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{N}}\color[RGB]{0,0,0}) \cdot \, \dotsb\, \cdot f({\color[RGB]{34,136,51}Z\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}z_{1}}\color[RGB]{0,0,0}) \cdot \mathrm{P}(F\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}\boldsymbol{f}\nonscript\:\vert\nonscript\:\mathopen{} \mathsfit{I}) } \end{aligned} \]



Inferences about predictands \({\color[RGB]{68,119,170}Y}\) of a new unit, given its predictors \({\color[RGB]{68,119,170}X}\) and given both predictands & predictors of observed units

\[ \begin{aligned} &\mathrm{P}\bigl( \color[RGB]{238,102,119}Y_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{N+1} \color[RGB]{0,0,0}\pmb{\nonscript\:\big\vert\nonscript\:\mathopen{}} \color[RGB]{34,136,51}X_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{N+1}\, \mathbin{\mkern-0.5mu,\mkern-0.5mu}\, Y_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_N \mathbin{\mkern-0.5mu,\mkern-0.5mu}X_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_N \mathbin{\mkern-0.5mu,\mkern-0.5mu} \dotsb \mathbin{\mkern-0.5mu,\mkern-0.5mu} Y_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_1 \mathbin{\mkern-0.5mu,\mkern-0.5mu}X_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_1 \color[RGB]{0,0,0}\mathbin{\mkern-0.5mu,\mkern-0.5mu}\mathsfit{I}\bigr) \\[2ex] &\qquad{}= \frac{ \mathrm{P}\bigl( \color[RGB]{238,102,119}Y_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{N+1} \color[RGB]{0,0,0}\mathbin{\mkern-0.5mu,\mkern-0.5mu} \color[RGB]{34,136,51}X_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{N+1} \mathbin{\mkern-0.5mu,\mkern-0.5mu} Y_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_N \mathbin{\mkern-0.5mu,\mkern-0.5mu}X_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_N \mathbin{\mkern-0.5mu,\mkern-0.5mu} \dotsb \mathbin{\mkern-0.5mu,\mkern-0.5mu} Y_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_1 \mathbin{\mkern-0.5mu,\mkern-0.5mu}X_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_1 \color[RGB]{0,0,0}\pmb{\nonscript\:\big\vert\nonscript\:\mathopen{}} {\mathsfit{I}} \bigr) }{ \sum_{\color[RGB]{170,51,119}y} \mathrm{P}\bigl( \color[RGB]{238,102,119}Y_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}{\color[RGB]{170,51,119}y} \color[RGB]{0,0,0}\mathbin{\mkern-0.5mu,\mkern-0.5mu} \color[RGB]{34,136,51}X_{N+1} \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{N+1} \mathbin{\mkern-0.5mu,\mkern-0.5mu} Y_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_N \mathbin{\mkern-0.5mu,\mkern-0.5mu}X_N \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_N \mathbin{\mkern-0.5mu,\mkern-0.5mu} \dotsb \mathbin{\mkern-0.5mu,\mkern-0.5mu} Y_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_1 \mathbin{\mkern-0.5mu,\mkern-0.5mu}X_1 \mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_1 \color[RGB]{0,0,0}\pmb{\nonscript\:\big\vert\nonscript\:\mathopen{}} {\mathsfit{I}} \bigr) } \\[3ex] &\qquad{}= \frac{ \sum_{\boldsymbol{f}} f({\color[RGB]{238,102,119}Y\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{N+1} \mathbin{\mkern-0.5mu,\mkern-0.5mu}X\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{N+1}}) \cdot f({\color[RGB]{34,136,51}Y\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{N} \mathbin{\mkern-0.5mu,\mkern-0.5mu}X\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{N}}) \cdot \, \dotsb\, \cdot f({\color[RGB]{34,136,51}Y\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{1} \mathbin{\mkern-0.5mu,\mkern-0.5mu}X\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{1}}) \cdot \mathrm{P}(F\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}\boldsymbol{f}\nonscript\:\vert\nonscript\:\mathopen{} \mathsfit{I}) }{ \sum_{\boldsymbol{f}} f({\color[RGB]{34,136,51}Y\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{N} \mathbin{\mkern-0.5mu,\mkern-0.5mu}X\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{N}}) \cdot \, \dotsb\, \cdot f({\color[RGB]{34,136,51}Y\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}y_{1} \mathbin{\mkern-0.5mu,\mkern-0.5mu}X\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}x_{1}}) \cdot \mathrm{P}(F\mathclose{}\mathord{\nonscript\mkern 0mu\textrm{\small=}\nonscript\mkern 0mu}\mathopen{}\boldsymbol{f}\nonscript\:\vert\nonscript\:\mathopen{} \mathsfit{I}) } \end{aligned} \]